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Abstract

We develop a quantitative New Keynesian DSGE model to study the introduc-

tion of a central bank digital currency (CBDC): digital government-backed money

available to retail consumers. At the heart of our model are monopolistic banks with

market power in deposit and loan markets. When CBDC is introduced, households

benefit from the expansion of liquidity services and higher deposit rates as bank de-

posit market power is curtailed. However, deposits also flow out of the banking sys-

tem and bank lending contracts. We assess this welfare trade-off for a wide range of

economies that differ in their level of interest rates. We find substantial welfare gains

of introducing CBDC, with an optimal CBDC interest rate that can be approximated

by a simple rule of thumb: it equals the maximum between 0% and the policy rate

minus 1%.

JEL codes: E3, E4, E5, G21, G51.
Keywords: Central bank digital currency, Banks, DSGE, Monetary policy.

*Paul and Ulate: Federal Reserve Bank of San Francisco, Wu: University of Notre Dame and NBER. We
thank Pengfei Jia, Ashley Lannquist, Emi Nakamura, and Sanjay Singh for their useful comments and sug-
gestions. We also thank Caroline Paulson for excellent research assistance. Any opinions and conclusions
expressed herein are those of the authors and do not necessarily represent the views of the FRBSF or the
Federal Reserve System.



1 Introduction

The introduction of a central bank digital currency is one of the most far-reaching inno-
vations that central banks have considered over the last decades. By 2023, 11 countries
have officially adopted a CBDC and 19 of the G20 countries are advancing CBDC projects,
most prominently the European Central Bank. The introduction of such a new currency
can drastically change the financial landscape and raises a number of salient questions.
First and foremost, is the introduction of a CBDC beneficial for an economy as a whole?
Second, how should central banks set the interest rate on CBDC, and how does this rate
depend on the state of an economy, in particular the level of interest rates? And third,
how does the presence of a CBDC affect the conduct of monetary policy and the behavior
of an economy over the business cycle? In this paper, we seek to answer these questions
by proposing a new general equilibrium model that features a realistic banking sector and
that is closely calibrated to empirical evidence.

To preview the key mechanisms, we start with a static partial equilibrium model of
deposit intermediation. This simple framework has two important features. First, cash,
deposits, and CBDC provide households with liquidity benefits and the three instruments
are imperfectly substitutable. Second, banks are monopolistic and set the deposit rate as
a variable markdown on the policy rate. As a result, banks’ deposit market power and
the competition between the three liquidity-providing instruments jointly determine the
difference between the policy rate and the deposit rate, which is the deposit spread that
banks charge.

Our static framework illustrates the following relations. In the absence of CBDC, the
deposit spread rises with the level of the policy rate since banks gain market power as
the rate on cash is fixed at zero (c.f., Drechsler et al., 2017). When CBDC is introduced,
the deposit spread decreases since households value the liquidity benefits that CBDC
provides and lower their deposit holdings. The deposit spread falls the most if the rate
on CBDC is close to the policy rate since CBDC is a stronger competitor to deposits within
that range. Thus, in an environment with a high policy rate and a large deposit spread, a
CBDC that pays interest can be an important competitive force, lowering banks’ deposit
market power.

Besides the behavior of the deposit spread, the static framework also points to the key
trade-off that determines the impact of introducing CBDC on welfare in general equi-
librium. On one hand, households benefit from CBDC since it is a liquidity-providing
instrument that they desire and because it provides competition to bank deposits which
lowers deposit spreads. On the other hand, banks not only have to raise their deposit
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rates but also face deposit outflows, both lowering their profitability and decreasing bank
intermediation capacity.

To fully explore this trade-off, we enrich the static framework with a set of features
that are particularly relevant in this context: a banking sector that intermediates between
deposit and loan markets, financial frictions that make bank capital slow-moving and
determine credit supply, a corporate production sector, a bond market that can substitute
for bank financing, and nominal price rigidities building on the New Keynesian tradition.
We tightly calibrate the model to U.S. data and show that it successfully matches loan and
bond spreads, as well as historical deposit rates for various levels of the policy rate.

We use the model as a laboratory to explore the effects of introducing CBDC and its
role in monetary policy transmission. First, we investigate how the impact of CBDC in-
troduction varies with the level of CBDC remuneration, that is, its interest rate. Interest-
ingly, the welfare change displays an inverted U-shape. If CBDC pays a low interest rate,
households hold a negligible amount of CBDC in their portfolios and banks’ deposit mar-
ket power is largely unaffected, limiting the potential gains from CBDC introduction. By
contrast, if CBDC pays a high interest rate, households flock to CBDC, deposits pour out
of the banking sector, and bank profitability and bank lending contract substantially. As
a result, the welfare impact of CBDC turns negative as the bank disintermediation effect
that leads to lower aggregate investment and output dominates the beneficial effects of
CBDC. Thus, the model delivers a unique optimal CBDC rate. For our baseline economy
that is calibrated to U.S. data, this rate is different from zero and lies at around 0.8%.

Second, instead of studying the introduction of CBDC for a specific economy, we an-
alyze the effects of introducing CBDC in many economies that differ in the level of their
steady-state policy rates. To start, we assess the introduction of a CBDC that pays zero
interest as often envisioned by countries that plan to introduce CBDC. For a large range of
negative as well as positive policy rates, we find positive welfare gains that are smaller in
high interest rate economies where households would hold only small amounts of CBDC
and bank deposit market power is barely challenged.

While encouraging, this exercise hides the fact that a remunerated CBDC can lead to
substantially higher welfare gains. To explore this possibility, we determine the CBDC
rate that maximizes welfare for each of these economies. For policy rates below 1%, the
optimal CBDC rate is slightly negative and can even be higher than the policy rate. For
policy rates above 1%, the optimal CBDC rate lies between 80 and 120 basis points below
the policy rate. We show that this welfare-maximizing CBDC rate can be well approx-
imated by a simple rule of thumb: it is the maximum between 0% and the steady-state
policy rate minus 1%. The simplicity of this rule is appealing since it can be applied to
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many economies that differ substantially in their level of interest rates. Central banks can
also easily communicate this remuneration scheme to households and avoid the political-
economy concerns that can potentially arise when CBDC pays negative interest.

The introduction of a CDBC with such a remuneration scheme has far-reaching ef-
fects on the banking system. Particularly striking is how banks’ deposit market power is
curtailed in high interest rate environments. At a policy rate of 5%, banks charge a sub-
stantial deposit spread of around 2.5% in the absence of CBDC. If CBDC is introduced at
its optimal rate, the deposit rate rises from around 2.5% to 4.3%, diminishing the deposit
spread to only 70 basis points. In fact, for the range of policy rates between 2% and 7%,
we find that the positive relation between the deposit spread and the level of the policy
rate vanishes after the CBDC introduction, and that the deposit spread stabilizes around
the aforementioned 70-basis-point level. These results connect with the intuition from
our static framework: while cash is a weak competitor to deposits at high interest rates, a
CBDC that pays interest can substantially curtail bank market power in deposit markets.

The scaling down of bank market power in deposit markets at high interest rates is
also reflected in the welfare changes from a CBDC introduction across policy rates. For
policy rates below 2%, we find positive but modest welfare gains of around 0.25%—
measured as the multiplicative consumption-equivalent variation required to keep the
representative household indifferent between the pre-CBDC and the post-CBDC steady
states. However, this number increases in high interest rate environments. For example,
for a policy rate of 6%, we find a sizeable welfare gain of around 1% using our welfare
measure.

Finally, we explore the role of CBDC in potentially altering the response of an econ-
omy to typical business cycle innovations. Across a wide range of CBDC remuneration
schemes, we find that the reactions of various macroeconomic indicators to standard
monetary policy and technology shocks are remarkably similar. Thus, even though the
introduction of a CBDC can lead to lasting welfare effects and changes in the financial
landscape, responses to transitory shocks remain almost identical.

Related Literature. Our paper contributes to the new and rapidly emerging literature
on the macroeconomics of CBDC.1 In particular, our work is closely related to studies that
examine the impact of CBDC on bank disintermediation in a macroeconomic framework.

Most existing studies base their analysis on a New Monetarist approach. For example,
Keister and Sanches (2022) show that CBDC causes bank disintermediation as it crowds
out bank deposits, leading to a decline in investment. However, they find that intro-

1See, e.g., Chapman et al. (2023), Infante et al. (2023), and Ahnert et al. (2022) for recent surveys.
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ducing CBDC often raises welfare because it improves payment efficiency. Williamson
(2022b) develops a model of banking and payments in which firms are subject to col-
lateral constraints and CBDC is introduced through a narrow banking facility. He finds
that CBDC can be welfare-improving as it uses safe assets more efficiently and helps to
mitigate a capital over-accumulation problem. In contrast to these models with compet-
itive banking, Andolfatto (2021) considers a model with monopolistic banks and finds
that the introduction of a CBDC can increase a bank’s deposit rate and thus increase de-
posit financing while not necessarily impacting bank lending. Chiu et al. (2023) use a
micro-founded model of payments where banks engage in oligopolistic competition in
the deposit market. They show that CBDC may crowd-in or crowd-out bank interme-
diation, depending on the interest rate paid on CBDC. Relative to these contributions,
we consider a New Keynesian DSGE model with imperfect substitutability between bank
deposits and CBDC, bank market power in deposit and loan markets, and where bank
profitability matters for bank lending.

Up to this point, relatively few papers have studied the macroeconomic effects of in-
troducing CBDC in a DSGE model of the type that is commonly used by central banks.
Barrdear and Kumhof (2022) find that CBDC issuance of 30 percent of GDP against gov-
ernment bonds could lower the real interest rate and thus increase GDP by 3 percent.
Most closely related to our work is the paper by Burlon et al. (2023), who find that the
introduction of CBDC can lead to substantial welfare gains. In comparison, our model
features bank market power in deposit markets, which gives rise to the endogenous de-
posit spread that we highlight, as well as nonbank lending through the bond market. As
a result, our model allows for two additional channels through which CBDC can lead to
relatively higher welfare gains.

The welfare gains of introducing CBDC may also be higher if the bank disintermedia-
tion effect is dampened, which may occur for the following two reasons. Using a banking
industry equilibrium model, Whited et al. (2023) show that banks largely replace lost de-
posits with wholesale funding, such that bank lending only contracts by a fourth of the
deposits lost. Similarly, Abad et al. (2023) find that banks mainly decrease their excess
reserves when deposits leave as opposed to contracting their lending. In our framework,
banks are able to replace deposits with wholesale funding and decrease their reserves.

Several other papers study optimal monetary policy and CBDC design. Brunnermeier
and Niepelt (2019) formulate conditions under which a swap of private money for CBDC
is irrelevant to economic allocation. Davoodalhosseini (2021) explores optimal monetary
policy in a model where agents use cash and CBDC as payment instruments. Agur et al.
(2022) consider the optimal design of CBDC in the presence of network effects. Closely
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related to our work, Niepelt (2023) studies the optimal quantity of CBDC in a standard
growth and business cycle model where banks are monopsonists in deposit markets. He
finds that the welfare-maximizing share of CBDC in payments generally exceeds that of
deposits. In comparison, our framework features nominal rigidities, bank market power
in loan markets, nonbank lending, and a role for bank profitability to determine credit
supply.

The modeling differences that we highlight distinguish our paper from the literature
and allow us to assess the quantitative importance of the mentioned channels following
an introduction of a CBDC. One key contribution is to show that the welfare-maximizing
CBDC rates for economies that differ in their levels of interest rates can be approximated
by a simple rule of thumb. We further reveal that economies with higher policy rates
can obtain larger welfare gains from introducing CBDC. That is because bank deposit
market power—an important feature of our model—is reduced relatively more in such
environments.

2 A Static Bank Deposit Model

How does the introduction of CBDC affect the deposit rate and its spread relative to the
policy rate? And how does this relationship change with the level of the policy rate and
the interest that CBDC pays? In this section, we present a static partial equilibrium model
of deposit intermediation with monopolistic banks to answer these questions. This simple
model facilitates analytical tractability and helps to build intuition for the results of the
larger quantitative DSGE model that we discuss in Section 3.

2.1 Deposit Supply Functions

To start, we take the household’s deposit supply schedule as given. Section 3 shows
how such a schedule can be formally derived from the household optimization problem.
The household has access to three liquidity-providing instruments: cash (m), aggregate
deposits (d), and CBDC. Their returns are zero, id, and icbdc, respectively. The aggregate
deposit supply function is

d = γd

(
1 + id

1 + iL

)θ

L, (2.1)
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where θ is the elasticity of substitution between the three aggregate liquidity-providing
instruments, γd is described below, and L is the real aggregate liquidity supplied by the
household, which we take as given for now and endogenize in Section 3. Equation (2.1)
specifies that deposit supply depends positively on the ratio of the gross deposit rate to
the gross rate on liquid instruments, defined as

1 + iL =
(

γm + γd(1 + id)θ+1 + γcbdc(1 + icbdc)θ+1
) 1

θ+1 . (2.2)

The coefficients γm, γd, and γcbdc determine the importance of each of the instruments to
the household due to exogenous non-interest-rate characteristics, and they satisfy γm +

γd + γcbdc = 1. Aggregate deposits d, in turn, are comprised of deposits in n individ-
ual banks, each of which is indexed by j. Bank j pays a deposit rate of id

j and faces an
individual deposit supply function given by

dj =
1
n

(
1 + id

j

1 + id

)εd

d, (2.3)

where εd is the elasticity of substitution between different banks. Equation (2.3) indicates
that the supply of deposits to bank j depends positively on the ratio of its gross deposit
rate to the aggregate gross deposit rate, which is defined as

1 + id =

(
n

∑
j=1

1
n
(1 + id

j )
εd+1

) 1
εd+1

. (2.4)

2.2 Banks

At the beginning of the period, each individual bank is endowed with equity f j and issues
deposits dj. The bank uses these funds to finance its holding of reserves hj, which pay the
policy rate i. For simplicity, reserves are the only asset that banks invest in, an assumption
that we relax later. Bank j’s balance sheet condition is therefore:

hj = f j + dj. (2.5)

The bank maximizes its end-of-period equity

max
id
j ,dj,hj

(1 + i)hj − (1 + id
j )dj,
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subject to the deposit supply equations (2.1)-(2.4) and the balance sheet constraint (2.5).
Each bank has some monopoly power, and it chooses the interest rate it pays on deposits,
the amount of deposits it takes on, and how many reserves to hold. The first order condi-
tion for this bank problem is

1 + id
j =

ϵd
j

ϵd
j + 1

(1 + i), (2.6)

where ϵd
j is the endogenous elasticity of deposits with respect to the deposit rate, that is,

ϵd
j ≡ ∂ ln dj/∂ ln(1 + id

j ); see Appendix A for derivations. Equation (2.6) highlights that
bank j sets its deposit rate as a markdown on the policy rate. Assuming all banks are
symmetric, we can express the endogenous elasticity as

ϵd =
n − 1

n
εd +

θ

n
(1 − ωd

L), (2.7)

where

ωd
L =

(1 + id)d
(1 + iL)L

= γd

(
1 + id

1 + iL

)θ+1

(2.8)

is the endogenous share of liquidity that stems from deposits at the end of the period,
which we label the “endogenous deposit share” for short. When cash, deposits, and
CBDC pay the same interest rate, the endogenous share coincides with the exogenous
share, ωd

L = γd.
Equation (2.7) shows that the endogenous elasticity of bank deposits with respect to

the deposit rate is a combination of two elasticities. With weight (n − 1)/n, it simply re-
flects the exogenous elasticity εd with which depositors substitute across different banks.
With the complementary weight 1/n, it depends on how aggregate deposit supply reacts
to changes in the aggregate deposit rate, which individual banks partially internalize be-
cause of their monopoly power and non-infinitesimal size.2 Given that all banks face the
same endogenous elasticity, equation (2.6) can be expressed as

i − id

1 + id =
1
ϵd , (2.9)

where (i − id)/(1 + id) represents the spread that banks make when they accept deposits

2Atkeson and Burstein (2008) derive a similar equation, but their focus is on the goods market, whereas we
study bank deposits.
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at rate id and keep them at the central bank earning the policy rate, normalized by 1 + id.
This deposit spread is solely determined by the endogenous deposit elasticity. Taken
together, equations (2.2) and (2.7)-(2.9) form a system that determines id, ϵd, ωd

L, and iL

simultaneously.

2.3 How Central Bank Interest Rates Affect Deposit Rates

We first inspect how interest rates controlled by the central bank, namely the rate on
reserves (the policy rate) and the rate on CBDC, affect the deposit rate and the deposit
spread.

Proposition 1.

1. The deposit rate increases with the policy rate and the rate on CBDC.

2. The deposit spread increases with the policy rate but decreases with the rate on CBDC.

3. Deposits increase with the policy rate but decrease with the rate on CBDC.

Proof: see Appendix A.2.

The result on the deposit rate is intuitive, it shows the spillover from the central bank’s
policy instruments to the rates that are relevant for banks and households. But why do the
two rates have opposite effects on the deposit spread and the amount of deposits? Equa-
tions (2.7), (2.8), and (2.9) are the key expressions that capture the transmission mecha-
nism. When the rate on reserves increases, banks pass a fraction of this higher rate to
their depositors. A higher deposit rate increases the endogenous deposit share ωd

L, which
has two effects. First, a higher deposit share translates directly into more deposits given
the aggregate liquidity being fixed. Second, a higher deposit share lowers the endoge-
nous elasticity ϵd and increases the deposit spread. This mechanism is also present in
Drechsler et al. (2017). With a higher policy rate, banks gain market power relative to
alternative liquid instruments and therefore charge a higher spread. On the other hand,
when the rate on CBDC increases, CBDC poses more competition to banks, the endoge-
nous deposit share decreases, which decreases both deposits and the deposit spread.

2.4 Effects of Introducing CBDC

Next, we turn to the core question of interest: what happens to the deposit rate and the
deposit spread when the central bank introduces CBDC? We capture the introduction of
CBDC by changing the interest rate paid on CBDC from -100% to some higher percent that
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Figure 2.1: Panel A: Change in the deposit spread following the introduction of CBDC
across different values of the policy rate. Panel B: Endogenous deposit share (ωd

L)
across different values of the policy rate before and after the introduction of CBDC.
The figure uses the baseline calibration described in Section 4.

is roughly in the vicinity of 0%. We choose -100% as a starting point since that corresponds
to the case where CBDC is not used at all in our larger DSGE model.

According to Proposition 1, the introduction of CBDC increases the deposit rate, de-
creases the deposit spread, and induces deposit outflow. Based on a calibration that corre-
sponds to the one used in Section 3, Panel A of Figure 2.1 plots the change in the deposit
spread when CBDC is introduced with a zero percent interest rate, as a function of the
policy rate. Interestingly, it displays a U-shape. What is the intuition? Per equations (2.7),
(2.8), and (2.9), it works through the endogenous elasticity via the endogenous deposit
share ωd

L, which is plotted in Panel B of Figure 2.1. When CBDC pays zero interest and
the policy rate is high, CBDC and cash barely compete with deposits, and hence ωd

L is
close to one regardless of whether CBDC exists or not. Therefore, the introduction of
CBDC leaves ωd

L mostly unaffected and hence the deposit spread remains roughly un-
changed. In the other extreme, for a fairly negative policy rate, deposits are undesirable
compared to cash or CBDC. Therefore, ωd

L is close to zero regardless of the existence of
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Figure 2.2: Change in the deposit spread following the introduction of CBDC, across
different values of the policy rate, for different choices on the interest rate of CBDC
(icbdc). Panel A depicts a CBDC that pays a constant interest rate, Panel B depicts a
CBDC that pays the policy rate with a fixed spread.

CBDC.
Only when the policy rate is at intermediate levels, CBDC and deposits are close sub-

stitutes. In this case, introducing CBDC affects the endogenous share and hence the en-
dogenous elasticity of deposits substantially. Therefore, the deposit spread drops the
most for moderate levels of the policy rate.

The U-shape is not unique to a CBDC that pays a zero interest rate. Panel A of Figure
2.2 shows this shape holds as long as CBDC pays a constant interest rate. A higher in-
terest rate on CBDC shifts the minimum of the curve towards the southeast: it increases
the policy rate where CBDC introduction affects the deposit spread the most while also
increasing the maximum change in the spread in absolute value.

Alternatively, when the interest rate on CBDC is pegged to the policy rate, the U-shape
disappears, as shown in Panel B of Figure 2.2. In this case, the change in the deposit
spread is a decreasing function of the policy rate. This occurs because CBDC becomes a
more effective competitor to deposits the higher the policy rate is.
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Thus, this simplified model already points to an important tradeoff of a potential
CBDC introduction. While such a policy can benefit households and shield them from
the monopolistic power of banks, it can lower deposit spreads and therefore affect com-
mercial bank profitability negatively. In dynamic models where commercial bank equity
is slow moving and relevant for lending, a fall in bank profitability can have a negative
impact on the economy. In the following section, we embed the static model into a New
Keynesian DSGE model to quantify this tradeoff and further study aggregate welfare ef-
fects.

3 The DSGE Model

In this section, we introduce a full fledged DSGE model for quantitative analyses. The
key players in the model are a representative household, banks with monopoly power, a
production sector, and a government.

The deposit side of the banking sector builds upon the ingredients laid out in Section
2. In addition, banks also issue corporate loans and face several operational costs. The
household has access to four saving instruments: bonds, cash, bank deposits, and CBDC,
where the last three instruments provide liquidity services with imperfect substitution.

The production sector consists of a representative intermediate good firm, a repre-
sentative capital producer, monopolistically competitive retail firms, and a representative
final good producer. The intermediate good firm purchases capital from the capital pro-
ducer and combines it with labor from the household to produce an intermediate good.
Its capital input is aggregated from two types of capital with non-unitary substitution:
“non-pledgeable capital,” which is financed by unsecured bond borrowing, and “pledge-
able capital,” which is financed through bank loans.

Retail firms face the standard Calvo price rigidity and transform the intermediate
good into differentiated retail goods, which are then aggregated into a final good by the
final good producer. The government includes a central bank that conducts monetary
policy and a fiscal authority with a balanced budget.

3.1 Household

Setup. The household’s lifetime utility is

E0

∞

∑
t=0

βt (u(Ct)− v(Nt)) ,
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where β is the discount factor, Ct is consumption, and Nt is labor supply. The household’s
budget constraint is given by

PtCt + Bt + Φ(Lt)Pt = WtNt + AHt−1 + Tt,

where Pt is the aggregate price level, Bt are nominal bond holdings, Wt is the nominal
wage, and Φ(Lt) is described below. Tt captures transfers that are exogenous from the
household’s perspective, including net transfers from the government as well as profits
from firms and banks. AHt−1 refers to “assets in hand” that the household enters period
t with, given by

AHt−1 = Mt−1 + (1 + it−1)Bt−1 +
n

∑
j=1

(1 + id
j,t−1)Dj,t−1 + (1 + icbdc

t−1 )CBDCt−1.

The household can save in cash (Mt), bonds (Bt), deposits with any of the n different
commercial banks (Dj,t), and CBDC (CBDCt) if available, where capital letters denote
nominal terms. The associated net nominal returns for these instruments are zero, it, id

j,t,
and icbdc

t , respectively. The variable Lt in the budget constraint aggregates the various
liquidity-providing instruments (cash, deposits, and CBDC), defined as

Lt =

(
γ
− 1

θ
m m

θ+1
θ

t + γ
− 1

θ
d d

θ+1
θ

t + γ
− 1

θ
cbdccbdc

θ+1
θ

t

) θ
θ+1

, (3.1)

where lowercase letters denote real variables (e.g., mt = Mt/Pt). The parameter θ is the
elasticity of substitution between liquid instruments and γm + γd + γcbdc = 1. Addition-
ally, real deposits dt are an aggregation of deposits in n banks:

dt =

(
n

∑
j=1

α
− 1

εd
j d

εd+1
εd

j,t

) εd

εd+1

,

where ∑n
j=1 αj = 1 and εd ≥ θ. The fact that cash, deposits, and CBDC are not perfect

substitutes within Lt captures the possibility that the household uses them for differ-
ent types of transactions because of their different properties. For example, bank de-
posits and CBDC are useful for online transactions while cash is not; cash provides better
anonymity than deposits and CBDC; cash and CBDC are government-backed while bank
deposits are not necessarily insured; cash is more likely to be subject to theft. For these
reasons, among others, the representative household might want to hold a combination
of liquidity-providing instruments instead of simply holding the one with the highest
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return. A similar argument holds for deposits from different banks.3

Lastly, Φ(Lt) captures a non-linear cost function of acquiring liquidity. Initially, when
the household has few liquid instruments, the cost of acquiring liquidity is less than
one-for-one, Φ(Lt) < Lt, which reflects the convenience benefit of holding liquidity.4

Eventually, when agents get “satiated” with liquidity services, it can be the case that
Φ(Lt) > Lt.5 We choose to introduce Φ(·) directly in the budget constraint for simplic-
ity. However, as shown in Appendix B.2, one can obtain the same first-order conditions
for the liquidity-providing instruments by allowing them to enter the utility function in-
stead.6

Equilibrium Conditions. Our setup delivers convenient equilibrium conditions. First,
the first-order conditions with respect to labor and bonds are the usual intra-temporal
condition for labor supply and the Euler equation:

v′(Nt) = u′(Ct)

(
Wt

Pt

)
, (3.2)

u′(Ct)

Pt
= β(1 + it)Et

(
u′(Ct+1)

Pt+1

)
. (3.3)

Next, the holding schedules of the liquidity-providing instruments are

mt = γm

(
1

1 + iLt

)θ

Lt, (3.4)

dt = γd

(
1 + id

t
1 + iLt

)θ

Lt, (3.5)

cbdct = γcbdc

(
1 + icbdc

t
1 + iLt

)θ

Lt. (3.6)

These holding schedules are well-defined even for negative values of the interest rates on
deposits, CBDC, or overall liquidity. The interest rate for liquidity and aggregate deposits

3Note that, unlike the traditional CES aggregator, the exponents within the Lt and dt aggregators are greater
than one instead of smaller than one. This occurs because these aggregators enter the budget constraint in-
stead of the utility function. Therefore, they must be convex (instead of concave) to prevent the household
from bunching its choice into a single liquidity-providing instrument or a single bank.

4Balloch and Koby (2019) use a related, but different, cost function of liquidity in the context of negative
nominal interest rates in Japan.

5This “satiation” is similar to the one described in Rognlie (2016).
6This holds as long as one assumes a GHH-style non-separable utility function between consumption and
liquidity as shown in Appendix B.2.
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are defined as

1 + iLt ≡
(

γm + γd(1 + id
t )

θ+1 + γcbdc(1 + icbdc
t )θ+1

) 1
θ+1 (3.7)

and

1 + id
t ≡

(
n

∑
j=1

αj(1 + id
j,t)

εd+1

) 1
εd+1

.

Furthermore, the amount of deposits that the household supplies to an individual bank
amounts to

dj,t = αj

(
1 + id

j,t

1 + id
t

)εd

dt, (3.8)

and the equilibrium condition for the aggregator Lt is as follows:

1 + iLt
1 + it

= Φ′(Lt). (3.9)

Appendix B.1 provides details on the derivations of the equilibrium conditions. Note that
equations (2.1)-(2.4) are a special case of the equilibrium conditions above. Besides being
static, Section 2 imposes the symmetry restriction that αj = 1/n ∀j.

3.2 Intermediate Good Firm

The intermediate good firm uses labor and capital to produce intermediate output. The
production function is Cobb-Douglas:

Ym
t = AtKα

t N1−α
t , (3.10)

where 0 < α < 1, Ym
t is the amount of intermediate output produced, At is productiv-

ity, and Kt is capital input. The intermediate good firm purchases capital from a capital
producer and finances its purchases via two possible channels. It borrows from the bond
market to finance capital that cannot be used as collateral, denoted non-pledgeable capital
KNP

t , which reflects the empirical observation that bond borrowing is typically unsecured
(Schwert, 2020). Alternatively, the firm can borrow from banks to purchase pledgeable
capital KP

t that can be used as collateral. Aggregate capital is a CES combination of these
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two types:

Kt =

(
(1 − ψ)

1
θk (KNP

t )
θk−1

θk + ψ
1

θk (KP
t )

θk−1
θk

) θk

θk−1
, (3.11)

where θk captures the elasticity of substitution between the two types. KP
t is itself an

aggregate of the pledgeable capital financed by each of the n banks:

KP
t =

(
n

∑
j=1

(αl
j)

1
εl (KP

j,t)
εl−1

εl

) εl

εl−1

,

where εl is the loan elasticity of substitution among banks and αl
j captures the exogenous

importance of a particular bank in the loan portfolio, with ∑n
j=1 αl = 1 and εl ≥ θk.

Capital is predetermined. In period t− 1, the intermediate good firm borrows from the
bond market or banks in order to purchase capital for next period’s production at price
Qt−1. At time t, it sells its depreciated capital stock (1 − δ) back to the capital producer
after production. Meanwhile, it pays back the lenders who charge different interest rates:
bank j charges the loan rate il

j,t−1, while the bond market charges the risk-free rate it−1

plus a spread ϱ. The intermediate good firm’s period t profit is

Πm
t = Pm

t Ym
t − WtNt + (1 − δ)Qt

n

∑
j=1

KP
j,t + (1 − δ)QtKNP

t

−
n

∑
j=1

(1 + il
j,t−1)Qt−1KP

j,t − (1 + it−1 + ϱ)Qt−1KNP
t .

The intermediate good firm maximizes the present value of profits (discounted using
the household’s stochastic discount factor) by choosing labor and capital inputs. The
associated optimality conditions are given in Appendix B.3, and they depend on the real
wage, as well as on the effective one-period user costs of aggregate capital, pledgeable
capital, and non-pledgeable capital, which we denote with zt, zP

t , and zNP
t , respectively.

3.3 Capital Good Producer

The capital producer faces the capital accumulation equation:[
KP

t+1 +
n

∑
j=1

KNP
j,t+1

]
= (1 − δ)

[
KP

t +
n

∑
j=1

KNP
j,t

]
+ It

(
1 − Ξ

(
It

It−1

))
, (3.12)
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where the function Ξ(·) captures investment adjustment costs and satisfies Ξ(1) = Ξ′(1)
= 0 and Ξ′′(1) ≥ 0. The problem of the capital producer in period t is:

max
It

Et

∞

∑
τ=0

Λt,t+τ

[
Qt+τ It+τ

(
1 − Ξ

(
It+τ

It+τ−1

))
− Pt+τ It+τ

]
,

where Λt,t+τ denotes the household’s stochastic discount factor for discounting nominal
flows from t + τ back to t. The first order condition of the capital producer is given in
Appendix B.4.

3.4 Banks

Bank’s Problem. The liability side of the bank balance sheet is similar to the one in
Section 2.2, while on the asset side we also consider the possibility of lending to the pro-
duction sector. The nominal balance sheet constraint of bank j now takes the form

Lj,t + Hj,t = Fj,t + Dj,t, (3.13)

where Lj,t represents lending to the intermediate firm, Hj,t are reserves issued by the
central bank, Fj,t is bank equity, and Dj,t are household deposits, all in nominal terms.

Besides adding bank lending, we introduce three additional features.7 First, in each
period, a bank returns an exogenous fraction, 1 − ω, of its profits to the household as
dividends and spends a fraction ς of its nominal net worth to operate the managerial side
of the bank. This setup implies that bank equity is slow moving, i.e., it takes time to re-
plenish after a shock. Second, a bank pays a quadratic cost, denoted by Ψ(Lj,t/Fj,t), when
its loan-to-equity ratio, Lj,t/Fj,t, deviates from a target value. This cost captures the idea
that regulators discourage banks from having high levels of leverage by imposing pun-
ishments when banks breach certain capital requirements, while market forces incentivize
banks to avoid levels of leverage that are too low. Together, the previous two assumptions
imply that a fall in bank profitability stemming from the introduction of CBDC can impact
bank equity, which in turn can affect bank lending. Finally, banks face exogenous costs
of issuing loans, µl, and obtaining deposits, µd, expressed per dollar of loan or deposit
issued. These costs are used to match the deposit and lending spreads without having to
necessarily assume their existence is solely due to the presence of monopoly power.

With the assumptions described in the previous paragraph, the nominal resources that

7These features are adopted from Ulate (2021).
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bank j has available when entering period t + 1 are given by

Sj,t+1 = (1 + il
j,t − µl)Lj,t + (1 + it)Hj,t − (1 + id

j,t + µd)Dj,t − ςFj,t − Ψ

(
Lj,t

Fj,t

)
Fj,t.

These total resources have to be used either to pay dividends or as next-period equity:

Sj,t+1 = Fj,t+1 + DIVj,t+1,

where dividends DIVj,t+1 are a fraction 1 − ω of a bank’s profit Xj,t+1:

DIVj,t+1 = (1 − ω)Xj,t+1,

and profits Xj,t+1 are, in turn, defined as

Xj,t+1 ≡ itFj,t + (il
j,t − µl − it)Lj,t + (it − µd − id

j,t)Dj,t

− Ψ

(
Lj,t

Fj,t

)
Fj,t − Fj,t(1 − ς)πt+1. (3.14)

We define Xj,t+1 as the net profit before paying managerial costs but after adjusting for
inflation πt+1 ≡ Pt+1/Pt − 1. The inflation adjustment is purely for convenience, because
it delivers a clean and interpretable expression for the law of motion of real bank equity,
which takes the form

Fj,t+1

Pt+1
=

Fj,t

Pt
(1 − ς) + ω

Xj,t+1

Pt+1
. (3.15)

If ω = ς = 0, then a bank’s real equity is constant. The larger ω is, the more bank equity
depends on profits and the more volatile it becomes.

A bank seeks to maximize the present discounted value of future dividends that it
returns to the household. Hence, bank j’s problem is:

max Et

∞

∑
τ=0

Λt,t+τ+1DIVj,t+τ+1.

As shown in Appendix B.5.1, the solution to the bank’s problem can be broken down into
a deposit and a loan sub-problem that we discuss next.
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Deposit Sub-problem. The deposit sub-problem amounts to

max
id
j,t

(it − id
j,t − µd)Dj,t,

subject to the deposit supply schedule Dj,t(id
j,t) of the household given by equation (3.8).

Assuming that a bank takes the decisions of all other banks as given, it sets its deposit
rate as follows:

1 + id
j,t =

ϵd
j,t

ϵd
j,t + 1

(1 + it − µd). (3.16)

Expression (3.16) shows that banks set their gross deposit rates as a markdown on the
gross policy rate minus the cost of issuing deposits. The markdown is determined by ϵd

j,t,
the endogenous elasticity of bank j’s deposits with respect to its deposit rate:

ϵd
j,t ≡

∂dj,t

∂(1 + id
j,t)

1 + id
j,t

dj,t
.

As shown in Appendix B.5.2, for the case with identical banks, this endogenous elasticity
takes the form:

ϵd
t =

n − 1
n

εd +
1
n

[
(1 − ωd

L,t)θ + ωd
L,t

∂ lnLt

∂ ln(1 + iLt )

]
. (3.17)

where ωd
L,t is again the endogenous deposit share

ωd
L,t ≡

(1 + id
t )dt

(1 + iLt )Lt
= γd

(
1 + id

t
1 + iLt

)θ+1

. (3.18)

Note that we can recover the expression in equation (2.7) from equation (3.17) when
∂ lnLt/∂ ln(1+ iLt ) = 0, which is imposed in Section 2, where L is assumed to be constant.
Thus, even in the larger model, the interpretation of ϵd

t remains similar: it is a weighted
average of the exogenous elasticities εd and θ, as well as ∂ lnLt/∂ ln(1 + iLt ), where the
weights for the last two terms are endogenous and can vary with the introduction of
CBDC.
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Loan Sub-problem. The loan sub-problem of bank j is:

max
il
j,t

(il
j,t − it − µl)Lj,t − Ψ

(
Lj,t

Fj,t

)
Fj,t,

subject to the loan demand schedule of the intermediate firm and Lj,t = QtKP
j,t+1. As

opposed to the markdown in the deposit rate, each individual bank sets its gross loan
rate as a markup on the cost-adjusted policy rate:

1 + il
j,t =

ϵl
j,t

ϵl
j,t − 1

[
1 + it + µl + Ψ′

(
Lj,t

Fj,t

)]
, (3.19)

where ϵl
j,t denotes (the negative of) the endogenous loan elasticity of lj,t with respect to

1 + il
j,t:

ϵl
j,t ≡ −

∂lj,t

∂(1 + il
j,t)

1 + il
j,t

lj,t
.

As shown in Appendix B.5.3, for the case of identical banks, this endogenous elasticity
takes the form:

ϵl
t =

{
n − 1

n
εl +

1
n

[
θk(1 − ωKP

K,t) +
ωKP

K,t

1 − α

]}
Qt

Pt

1 + il
t

1 + it

1
zP

t
. (3.20)

where ωKP
K,t is the expenditure on pledgeable capital as a share of total capital expenditure

ωKP
K,t ≡ zP

t KP
t

ztKt
= ψ

(
zP

t
zt

)1−θk

. (3.21)

Equations (3.19)-(3.21) provide some intuition on the response of loan spreads to the in-
troduction of CBDC which disintermediates banks and thereby decreases ωKP

K,t. If θk is
greater than 1/(1 − α), then the introduction of CBDC increases ϵl

t and therefore lowers
the loan spread.

Finally, we discuss the similarities and differences between equations (3.17) and (3.20).
For both, the endogenous elasticity puts a weight (n− 1)/n on the exogenous elasticity (εd

or εl). The remaining weight of 1/n is split between the two elasticities inside the square
brackets: an elasticity of substitution (θ for deposits or θk for loans) and the elasticity of
total liquidity (∂ lnLt/∂ ln(1 + iLt )) or capital (∂ ln K/∂ ln z = 1/(1 − α)) with respect to
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its price.8

3.5 Retail Firms and Final Good Producer

The setup of retail firms and the final good producer follows the typical modeling ap-
proach in the New-Keynesian literature. A continuum of retail firms indexed by s ∈ [0, 1]
transform intermediate output Ym

t into differentiated retail goods Yt(s), which are aggre-
gated into a final good Yt by the final good producer via a CES aggregator:

Yt =

(∫ 1

0
Yt(s)

φ−1
φ ds

) φ
φ−1

,

where φ is the elasticity of substitution between the differentiated retail goods. The opti-
mization problem of the final good producer implies the following demand function for
good s:

Yt(s) =
(

Pt(s)
Pt

)−φ

Yt,

where the price index is given by

Pt =

(∫ 1

0
Pt(s)1−φds

) 1
1−φ

.

Each period, a retail firm is able to freely adjust its price with probability 1 − γ as in the
Calvo setup, and it chooses the optimal reset price P∗

t to solve:

max
P∗

t

Et

∞

∑
τ=0

γτβτ u′(Ct+τ)

u′(Ct)

Pt

Pt+τ
[P∗

t − Pm
t+τ]Yt+τ|t,

where Yt+r|t is the amount sold in period t + τ by a firm that last reset its price in period t.
The conditions describing the optimal behavior of retail firms are given in Appendix B.6.

8A further difference between the two equations is that (3.20) features a term outside the curly bracket to
reflect the fact that loan demand reacts to zP

j,t (which is a function of 1 + il
j,t) instead of to 1 + il

j,t directly;
see the intermediate firm problem in Section 3.2.
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3.6 Government

Monetary policy is characterized by a Taylor rule with interest-rate smoothing:

it = (1 − ρi) (ι + ψπ(πt − π)) + ρiit−1 + ϵi
t, (3.22)

where ι is the steady state nominal rate, ρi ∈ [0, 1] reflects interest rate inertia, and ϵi
t

is an exogenous shock to monetary policy. Note that the policy rate is also the rate on
reserves, which is the same as the return on bonds. For simplicity, we assume government
spending is a constant fraction of output

Gt = gYt. (3.23)

We also assume that the government balances its budget period-by-period. Therefore,
the lump sum transfers from the government to the household are given by the proceeds
from seigniorage (covering cash, reserves, and CBDC) net of government expenditures.

3.7 Resource Constraint and Shocks

Output is divided between consumption, investment (for the two types of capital), gov-
ernment expenditure, and adjustment costs. The economy-wide resource constraint is
thus given by

Yt = Ct + It + Gt + Γt, (3.24)

where Γt represents all additional costs:

Γt = µl Lt−1

Pt
+ µd Dt−1

Pt
+ ς

Ft−1

Pt
+ Ψ

(
Lt−1

Ft−1

)
Ft−1

Pt
+ ϱ

Qt−1

Pt
KP

t

+ Φ(Lt)−
Mt + Dt + CBDCt

Pt
. (3.25)

Finally, we assume that the technology process follows an AR(1):

At = Aρa
t−1 exp(ϵa

t ). (3.26)

The full set of dynamic equations characterizing the equilibrium of the model is given in
Appendix B.8.
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4 Calibration

We calibrate the model to the U.S. economy at a quarterly frequency. The parameters as-
sociated with the financial block are particularly important for the quantitative realism of
the model. We lay out our calibration in four parts. First, we discuss parameters that are
set externally or are relatively standard in the literature. Next, we collect parameters re-
lated to the deposit side of the model, followed by the ones associated with the loan side,
and finally we discuss all other bank parameters. Table 4.1 lists the full set of parameters,
their values, and calibration targets.

4.1 Non-bank Parameters

The quarterly discount factor, β, is set to 0.995, giving an annualized policy rate of 2%,
which is consistent with the low interest rates that prevailed in the United States before
the COVID-19 pandemic. We use the standard functional forms for u(c) and v(n):

u(c) =
c1−σ − 1

1 − σ
, v(n) = χ

n1+ 1
η

1 + 1
η

, (4.1)

and set the intertemporal elasticity of substitution, 1/σ, and the Frisch elasticity, η, both
to one. The former is consistent with balanced growth in our model, while the latter is
consistent with the upper bound for macro elasticities in Chetty et al. (2011). The disutility
from labor, χ, is chosen such that steady-state labor is normalized to one-third.

The capital income share, α, is one-third and the depreciation rate, δ, is 0.02 quar-
terly, or 8% annually. The functional form for the investment adjustment cost function is
Ξ(x) = κI/2 · (x − 1)2, as in Sims and Wu (2021), and the κI parameter is set to 2 as in
that paper. We set the elasticity of substitution between differentiated retail goods, φ, to 6,
which is consistent with a steady state markup of 20%. The Calvo parameter, γ, captures
the probability for a retail firm to keep its price fixed and is set to the typical value of 0.75,
implying an average duration between price updates of one year. The Taylor rule pa-
rameters are set to standard values: the persistence parameter, ρi, is 0.8 and the response
to inflation, ψπ, is 1.5. Finally, the ratio of government spending to GDP, g, is set to 0.2,
roughly consistent with historical U.S. data.
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Table 4.1: Calibration.

Param. Value Description Target or source
Panel A. Non-bank
β 0.9950 Discount factor 2% policy rate
χ 8.8487 Disutility of labor One third S.S. labor
η 1.0000 Frisch elasticity Chetty et al. (2011)
σ 1.0000 Inverse of the I.E.S. Balanced Growth
α 0.3333 Capital share Standard
δ 0.0200 Depreciation rate 8% annual dep.
κI 2.0000 Investment adjustment cost Sims and Wu (2021)
φ 6.0000 Elasticity of subs. b/t diff. goods 20% mark-up
γ 0.7500 Prob. of keeping prices fixed One year duration
ψπ 1.5000 Inflation coefficient, Taylor rule Standard
ρi 0.8000 Smoothing parameter, Taylor rule Standard
g 0.2000 Steady state G/Y Standard
Panel B. Deposit side
n 1.1685 Number of banks Deposit rate target #1
γm 0.3005 Importance of cash in Liq. γm + γd + γcbdc = 1
γd 0.3990 Importance of deposits in Liq. D/L = 0.8 at i = 2%
γcbdc 0.3005 Importance of CBDC in Liq. γcbdc = γm (Bidder et al.)
θ 554.21 E.o.S. between instruments in Liq. Deposit rate target #2
εd 661.36 E.o.S. between banks in deposits Deposit rate target #3
a 0.8764 Parameter in Liquidity function Φ L/Y = 2.4 quarterly
b 1.0700 Parameter in liquidity function Φ Estimation
q -0.1615 Parameter in Liquidity function Φ S.S. relationship
µd -0.20% Cost of issuing deposits Deposit rate target #4
Panel C. Loan side
ψ 0.3000 Importance of pledgeable capital Crouzet (2021)
ϱ 0.70% Extra cost of corporate-bond borrowing Schwert (2020)
µl 0.35% Cost of issuing loans Schwert (2020)
εl 40.013 E.o.S. between banks in loans il = i + ρ ⇒ θk = f (εl)
θk 5.0000 Subs. between NP and P capital Feasible region
Panel D. Joint bank side
ω 0.6780 Fraction staying in bank L/F = ν in S.S.
ς 0.0474 Bank managerial cost 2.25% S.S. ROE
ν 9.0000 Loan-to-equity ratio target Ulate (2021)
κ 0.0012 Cost of deviating from target ratio Ulate (2021)

Notes: This table contains the parameter values used in the calibration, together with
their description and their source or target. All interest rates are annualized.
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4.2 Deposit Parameters

On the deposit side, it is important that our model matches empirical estimates for deposit
rates (and therefore also deposit spreads) at different levels of the policy rate. Namely, we
target four moments: (i) a deposit rate of 0% at a policy rate of 0.5% (taken from Ulate,
2021), (ii) a deposit rate of 0.75% at a policy rate of 2%, (iii) a deposit rate of 1.25% at a
policy rate of 3%, and (iv) a deposit rate of 2% at a policy rate of 4.5%, where the last three
targets are estimated from historical Ratewatch data.9 We match these four moments
by jointly calibrating n, the number of banks, θ, the elasticity of substitution between
different liquidity-providing instruments, εd, the elasticity of substitution between banks
in deposits, and µd, the cost of issuing deposits. This exercise yields estimates of n = 1.16,
θ = 554, εd = 661, and µd = −0.0020 (20 basis points quarterly).

Two points are noteworthy about these estimates. First, our calibration requires a
fairly low value of n. While this estimate is not an integer, and it is certainly lower than
the actual number of U.S. banks, we do not intend it to be taken literally. Rather, it allows
the model to match the relationship between the deposit rate and the policy rate while
remaining parsimonious.10 Second, the negative value of µd implies a “benefit” of issuing
deposits instead of a cost, and the calibrated value is close to the one in Ulate (2021)
of -0.0025. In reduced form, the negative µd could capture complementarities between
deposit taking and lending, fees charged to depositors, or benefits of using a relatively
stable source of funding (see also Abadi et al., 2022).11

The exogenous shares of cash, deposits, and CBDC (γm, γd, and γcbdc) are set to match
two targets together with the model-implied restriction that γm + γd + γcbdc = 1. The
first target is the pre-CBDC deposit-to-liquidity ratio d/L in steady state. We obtain an
estimate for this ratio using historical data on checking deposits, savings deposits, as well
as currency holdings, and constructing L based on equation (3.1) given our calibration for
θ. For the sample 1975:Q1-2020:Q1, we find that it is approximately 0.8 on average. The
second target is that cash and CBDC have roughly the same market share if CBDC pays

9We compute a historic deposit rate series that resembles the one in our model by using data from Rate-
watch on checking and saving deposit rates and weighting those by the historical shares of such deposits
based on data from the H.6 releases from the Federal Reserve Board of Governors (Sample: 2000:M1-
2020:M4). Comparing the resulting series to the federal funds rate yields approximately the calibration
targets between the policy rate and the deposit rate stated in the text.

10In particular, n is crucially related to the pass-through of the policy rate to the deposit rate, which is found
to be less than unity. Drechsler et al. (2017), for example, document a pass-through of 0.39 among large
banks and 0.46 on average (see pages 1821 and 1824 therein). In Appendix A.3, we obtain a closed-form
expression for the pass-through of the policy rate to the deposit rate and show that the crucial parameter
that governs this relation is the number of banks, n.

11Note that any further costs of operating the deposit franchise are incorporated in the managerial costs of
operating the bank, ς, which are substantial in our baseline calibration.
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no interest, as documented by surveys such as Bidder et al. (2024). Consequently, we set
γm = γcbdc = 0.3005 andγd = 0.3990.

The cost of liquidity function is parameterized as Φ(L) = aLb − q. The elasticity
parameter b is calibrated starting from the equilibrium condition (3.9),

1 + iLt
1 + it

= abLb−1
t . (4.2)

We proceed to take logs and subtract the resulting equation from its lagged counterpart,
giving

st − st−1 = (b − 1) · [ln(Lt)− ln(Lt−1)], (4.3)

where st ≈ iLt − it. As described above, we construct a time series for Lt using equation
(3.1). Similarly, we measure iLt based on equation (3.7) using a historic deposit rate se-
ries.12 Finally, we estimate (4.3) for the sample 2000:M1-2020:M4, which is the maximum
time span across all data series, and obtain b = 1.07.

Finally, the other parameters a and q inside the cost function for liquidity (Φ) are se-
lected to match a liquidity-over-GDP ratio L/Y of 2.4 at the quarterly frequency, and the
relationship that Φ(·) = m + d + cbdc in steady state. This approach yields the estimates
a = 0.8764 and q = −0.1615, respectively.

4.3 Loan Parameters

Next, we turn to parameters related to the loan side of the model. The parameter ψ

governs the importance of pledgeable capital for aggregate capital in (3.11) and therefore
pins down the share of bank borrowing. Crouzet (2021) shows that this share has declined
to around 30% for the most recent years and we calibrate ψ accordingly.

For the costs of bank and bond borrowing, we obtain estimates from Schwert (2020)
who compares bank loan rates and secondary bond quotes for the same firms on the same
date. Schwert (2020) finds that loan and bond spreads are similar for investment grade
firms. However, estimations yield that the average bond-implied loan spread should be
around 50% of the average all-in-drawn spread of 2.8% since loans are less risky due to
higher recovery rates in bankruptcy. Schwert (2020) associates the remaining premium
to banks’ market power in the loan market. To match these numbers, we assume that
bond and loan spreads are the same in steady state, that is, il = i + ϱ = 2.8%. However,

12We compute the deposit rate series as described in footnote 9.
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banks face half of the costs of issuing credit compared with the bond market, resulting in
ϱ = 0.7% for the costs of issuing bonds and µl = 0.35% for the costs of issuing loans, both
at the quarterly frequency.

Based on equations (3.20) and (3.21), the equivalence between bond and loan spreads
in steady state implies the following relationship between εl and θk :

n(i + ϱ + δ) =

[
(n − 1)εl + θk − ψ

(
θk − 1

1 − α

)]
(ϱ − µl), (4.4)

where all other parameters apart from εl and θk are pinned down. Therefore, we can in-
terpret the elasticity of substitution between bonds and loans, θk, as the remaining free
parameter, and, conditional on that, back out εl from (4.4). While we lack an empirical
target to pin down θk exactly, the model implies that it must lie in a feasible region be-
tween one and 11.8.13 For our baseline specification, we choose θk = 5 as a suggestive
value roughly in the middle of the feasible set, and show robustness of our main results
to alternative values in Appendix C.1.

4.4 Other Bank Parameters

Besides parameters related to the loan and deposit sides, a few other bank-related ones
remain. The function for the cost of deviating from the target loan-to-equity ratio is pa-
rameterized as: Ψ(L/F) = κνx (ln(L/F)− ln ν − 1) + κν2, following Ulate (2021). The
loan-to-equity target ratio, ν, and the cost of deviating from this ratio, κ, are also taken
from that paper, matching a steady-state loan-to-equity ratio of nine and using cross-
sectional relations between loan rates, loan amounts, and bank capital to obtain a value
of κ of 12 basis points. We also check the robustness of our results across different values
of κ in Appendix C.1.

Banks’ managerial cost, ς, determines their profitability. Using Call Report data for
commercial banks over 1984:Q1-2022:Q3, we find an average annualized return on assets
close to one percent. Given the loan-to-equity ratio of nine, this implies a quarterly return-
on-equity of 2.25% and we calibrate ς to match this moment in steady state. The fraction
of bank profits that stay within the bank and that are not paid out as dividends, ω, is
calibrated so that in the initial pre-CBDC steady state the loan-to-equity ratio L/F is equal
to its target ν.

13The lower bound of one comes from the assumption that pledgeable and non-pledgeable capital are sub-
stitutes instead of complements. The upper bound for θk is actually εl , due to the nested-CES structure of
the model. Given our remaining calibration and equation (4.4), this implies an upper bound for θk of 11.8.
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Figure 4.1: This figure shows the loan rate (dash-dot orange line) and the deposit rate
(dashed yellow line) obtained in the baseline calibration of the model as a function of
the policy rate. The policy rate is also plotted as the 45 degree line for comparison
(solid blue line).

4.5 Loan and Deposit Spreads

To provide some intuition for the behavior of spreads in the calibrated model, Figure 4.1
displays the loan rate and the deposit rate for different levels of the policy rate (which
is also shown as the 45-degree line). The loan spread ranges between 2.3% and 3.5%. It
is larger for higher levels of the policy rate. That is because banks gain market power
at higher policy rates, raising their profitability and market share relative to bonds, and
increasing the endogenous loan elasticity and therefore their loan markup over the policy
rate. We can see this mechanism from equations (3.19)-(3.21).

The deposit rate is below the policy rate for all positive values, but is close to the pol-
icy rate for rates below -1%. The deposit spread rises with higher levels of the policy rate
and bank market power. However, this relation is nonlinear. For policy rates between
-1% and 5%, the deposit spread widens substantially as the policy rate increases, as tar-
geted by our calibration strategy over these values. The widening of the deposit spread
becomes smaller when the policy rate is above 5% and stabilizes at higher policy rates.
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This behavior of the deposit spread is consistent with the data even though we do not
target deposit rates for such high levels of the policy rate in our calibration—providing
an external validation for the empirical fit of the model.14 Appendix A.3 provides further
details on the behavior of the pass-through of the policy rate to the deposit rate in our
model.

5 Implications of CBDC Introduction

In this section, we discuss the implications of CBDC introduction through the lens of our
full DSGE model. First, we focus on comparing how the economy differs between an
initial steady state where CBDC is not used and a final steady state where CBDC is avail-
able and we consider various remuneration schemes for CBDC. Throughout this section,
we frequently refer to the “welfare change” from introducing CBDC, which is formally
the multiplicative consumption-equivalent variation required to keep the representative
household indifferent between the pre-CBDC and the post-CBDC steady states (see Ap-
pendix B.10 for details), in percent. Second, we also discuss how the economy responds
to shocks around the pre-CBDC and various post-CBDC steady states.

5.1 CBDC Introduction for Different CBDC Rates

We first focus on our baseline calibration where the steady state policy rate is 2% and ana-
lyze outcomes of CBDC introduction for different levels of the interest rate paid on CBDC.
Figure 5.1 shows changes in welfare, the deposit-to-GDP ratio, and the CBDC-to-GDP ra-
tio across CBDC rates between -1% and 3% annually. As the rate paid on CBDC increases,
the CBDC-to-GDP ratio increases and the deposit-to-GDP ratio decreases monotonically.
Intuitively, as the interest rate paid on CBDC becomes more negative, the CBDC-to-GDP
ratio tends to zero, since households do not want to use a very unattractive liquid instru-
ment. In the limit, when the CBDC rate is -100% quarterly, households do not use CBDC
at all, which corresponds to our pre-CBDC scenario.

Most importantly, the welfare change from CBDC introduction displays an inverted
U-shape with respect to the interest rate paid on CBDC. It tends to zero for a very neg-
ative CBDC rate, becomes negative for very high CBDC rates, and achieves a positive
maximum of approximately 27 basis points (of initial steady-state consumption) when
the CBDC rate is approximately 0.8% per year. This welfare gain is higher than the one

14Such a behavior of deposit rates is reminiscent of deposit betas that are not constant but rise with higher
market rates, as documented in Greenwald et al. (2023), for example.
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of approximately 22 basis points when the CBDC rate is zero percent, an often-discussed
remuneration level by central banks which consider the introduction of CBDC. Interest-
ingly, the welfare-maximizing CBDC interest rate of approximately 0.8% per year is close
to the deposit rate in steady state.

The impact of CBDC on welfare in our model depends on three different channels.
First, CBDC can curtail commercial bank monopoly power and thereby increase the de-
posit rate that households get paid. Second, households like some of the characteristics
that CBDC has to offer. For example, CBDC can be used for electronic transactions while
it is also a direct liability of the central bank and thus not subject to bank runs. Such
benefits are jointly captured in the model with a positive γCBDC (which is present even
in the pre-CBDC steady state). Households therefore benefit when CBDC is introduced
because it allows them to better distribute their usage across the available liquid instru-
ments. Third, despite a higher deposit rate, some deposits flow out of the banking system
when CBDC is introduced. The higher deposit rate and the reduced amount of deposits
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Figure 5.1: This figure displays the behavior of some important variables for different
levels of the interest rate paid by CBDC. The welfare change (gain if positive, loss if
negative) from CBDC introduction is in blue, the deposit-to-GDP ratio is in orange,
and the CBDC-to-GDP ratio is in yellow.
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Figure 5.2: This figure shows different outcomes, before and after the introduction of
CBDC, for different levels of the interest rate paid by CBDC.

imply that bank equity declines, which in turn reduces credit supply, raises the cost of
capital for firms, and lowers welfare. For a discussion on intuition in depth, see Section 2.

For low and moderate levels of the CBDC rate, the first two channels described in the
previous paragraph dominate the third one, leading to an increase in overall welfare due
to CBDC introduction. However, for high levels of the CBDC rate, the bank disintermedi-
ation channel dominates, leading to a fall in overall welfare as observed by the right tail
in Figure 5.1.

Figure 5.2 plots how some other variables of interest behave, before and after the in-
troduction of CBDC, for different levels of the interest rate paid on CBDC. The deposit
spread is 120 basis points before CBDC. It falls to 96 basis points when CBDC is intro-
duced with a rate of 0%, but to 72 basis points when CBDC is introduced with the optimal
rate of 0.8%. Bank leverage is around nine in the initial steady state, but increases when
CBDC is introduced, a pattern that intensifies as the rate on CBDC increases. When bank
leverage increases, banks charge a higher loan rate, which explains the negative welfare
impact of a CBDC that pays a very high interest rate. Both the endogenous deposit share
and the share of bank lending (0.8 and 0.3, respectively, in the pre-CBDC steady state)
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Figure 5.3: This figure displays the behavior of some important variables for different
levels of the policy rate. The welfare change (gain if positive, loss if negative) from
CBDC introduction is in blue, the deposit-to-GDP ratio is in orange, and the CBDC-
to-GDP ratio is in yellow.

decrease with the introduction of CBDC, and fall more as the rate on CBDC increases.

5.2 CBDC Introduction for Different Policy Rates

Next, we change the nature of the exercise that we perform. Instead of analyzing CBDC
introduction for a given steady-state policy rate but different levels of the interest rate on
CBDC, we keep the interest rate on CBDC constant at 0%, as envisioned by many central
banks which consider the introduction of CBDC, and change the steady-state level of the
policy rate. We achieve the different steady-state levels of the policy rate by recalibrating
the discount factor β, while keeping the rest of the parameters of our baseline calibration
constant (however, our results are robust to recalibrating a larger set of parameters, see
Appendix C.4).15

15Notice that the most important parameters in our model, namely the deposit-side banking parameters
εd, θ, n, and µd, are calibrated to match deposit rates across levels of the policy rate. These parameters
therefore do not need to be re-calibrated when the discount factor is changed. Appendix C.4 shows that
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Figure 5.4: Panel A: Change in the deposit spread following the introduction of CBDC
across different values of the policy rate. Panel B: Endogenous deposit share (ωd

L)
across different values of the policy rate before and after the introduction of CBDC.
The figure uses the baseline calibration described in Section 4.

Figure 5.3 illustrates how several outcome variables of interest behave for steady-state
policy rates between -2% and 8% annually. As in Figure 5.1, we consider the welfare
change from CBDC introduction, the CBDC-to-GDP ratio, and the deposit-to-GDP ratio.
As the steady-state policy rate increases, the CBDC-to-GDP ratio decreases monotonically,
whereas the deposit-to-GDP ratio increases monotonically. Additionally, when the policy
rate increases, the CBDC-to-GDP tends to zero, since households do not want to use a
liquid instrument that pays relatively little compared to deposits. The welfare gains from
CBDC introduction have an approximately monotonic shape: they roughly fall with the
steady-state policy rate and tend to zero as the policy rate rises, precisely because CBDC
is mostly unused in such a scenario.

Figure 5.4 replicates Figure 2.1 for the full DSGE model instead of the simple static
model in Section 2. While some magnitudes change slightly due to various new ingre-

our results in this subsection and the next are robust to recalibrating additional parameters so that certain
targets continue to be matched across different levels of the policy rate.
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Figure 5.5: This figure displays the policy rate, in orange (in both axes, so it is the 45
degree line), the welfare-maximizing level of the CBDC rate, in blue, and an approx-
imate welfare-maximizing rule of thumb rate which is the maximum between 0 and
the policy rate minus 1%, in yellow.

dients and the general equilibrium nature of the model, the intuition carries over from
Section 2. The deposit spread falls the most due to the introduction of CBDC for interme-
diate levels of the steady-state policy rate of approximately 2.7% annually. For very high
or very low levels of the policy rate, the endogenous deposit share changes little with the
introduction of CBDC and the deposit spread therefore does not react much.

5.3 Welfare-Maximizing CBDC Rate Across Policy Rates

In Section 5.1, we showed that, for our baseline steady-state policy rate of 2%, the welfare-
maximizing level of the CBDC interest rate is around 0.8% per year. However, the effects
of introducing a CBDC for a given interest rate also vary substantially depending on the
steady-state level of the policy rate as shown in Section 5.2. Therefore, a natural question
that emerges is: what is the CBDC interest rate that maximizes the welfare change of
introducing CBDC for each level of the steady-state policy rate? Figure 5.5 displays the
answer to this question. In orange, the policy rate is shown as the 45 degree line, and in
blue, the welfare-maximizing CBDC rate is plotted.

Starting on the left, for negative levels of the policy rate, the welfare-maximizing
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CBDC rate is negative and above the policy rate. The two cross at around -40 basis
points annually. Subsequently, the welfare-maximizing CBDC rate is below the policy
rate by roughly 1 percent annually. This welfare-maximizing CBDC rate as a function
of the steady-state policy rate can be approximated fairly well by a rule of thumb CBDC
rate that is the maximum between 0% and the policy rate minus 1%, as illustrated by
the yellow line in Figure 5.5. While this approximate welfare-maximizing CBDC rate
does not capture all the intricacies of the full welfare-maximizing CBDC rate (like being
negative for negative levels of the policy rate), it is a rule of thumb that could easily be
communicated by central banks and, in welfare terms, does almost as well as the welfare-
maximizing rate, as we show below. This rule of thumb also has the benefit of avoiding
negative rates on CBDC, which present a political economy concern for central banks due
to the fear of the public that CBDC would be used to “expropriate their savings” with
below-zero interest rates.

What is the intuition for the fact that the welfare-maximizing CBDC rate increases with
the policy rate? The higher the policy rate, the higher the CBDC rate needs to be to take
a given share of the liquid-instruments market and therefore to contain commercial-bank
monopoly power by a given amount.

Figure 5.6 plots the deposit spread in the top row and the endogenous share of de-
posits in the bottom row—before and after the introduction of CBDC—across levels of
the policy rate (on the x-axis) and for different CBDC remuneration schemes. In the left
column, we present CBDCs that pay a constant interest rate, while in the right column,
we present a CBDC that pays the policy rate, a CBDC that pays the welfare-maximizing
CBDC rate, and a CBDC that pays the approximately welfare-maximizing rule of thumb
rate described in Figure 5.5.

Importantly, for levels of the policy rate that are roughly above 2% per year, the
welfare-maximizing policy rate achieves a stabilization of the deposit spread at around 70
basis points. Similarly, the endogenous deposit share is stabilized at around 65%. In con-
trast, a CBDC that pays a constant interest rate (regardless of the policy rate), can neither
stabilize the deposit spread nor the deposit share, as visible from the left column of Figure
5.6. On the other hand, a CBDC that pays the policy rate reduces the deposit spread and
the endogenous deposit share by too much relative to the welfare optimum.

Figure 5.7 plots the welfare change from introducing CBDC across different levels of
the policy rate (on the x-axis). The different lines represent the alternative CBDC remu-
neration schemes considered in Figure 5.6. As expected, the welfare change from the
welfare-maximizing CBDC rate is the envelope of the other lines. Echoing the message
from Figure 5.5, the line for the optimal CBDC rate touches the line for a constant CBDC

34



-1 0 1 2 3 4 5 6 7

Policy rate, in annual %

0

0.5

1

1.5

2

2.5
D

ep
os

it 
S

pr
ea

d,
 in

 a
nn

ua
l %

-1 0 1 2 3 4 5 6 7

Policy rate, in annual %

0

0.5

1

1.5

2

2.5

D
ep

os
it 

S
pr

ea
d,

 in
 a

nn
ua

l %

-1 0 1 2 3 4 5 6 7

Policy rate, in annual percent

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5 6 7

Policy rate, in annual percent

0

0.2

0.4

0.6

0.8

1

Figure 5.6: This figure shows the deposit spread (in the top row) and the endogenous
share of deposits (bottom row), before and after the introduction of CBDC, across lev-
els of the policy rate (in the x-axis), for different CBDC remuneration schemes. On the
left column, we present CBDCs that pay a constant interest rate, while on the right
column, we present a CBDC that pays the policy rate, a CBDC that pays the welfare-
maximizing CBDC interest rate for each level of the policy rate, and a CBDC that pays
the approximately welfare-maximizing rule of thumb (denoted “rot”) rate described
in Figure 5.5.

rate at a level of the policy rate that is around 1% higher (e.g., the line for the optimal rate
touches the line for iCBDC = 4% at a policy rate of roughly 5%). Interestingly, the welfare
change of the rule of thumb rate is almost identical to the one of the welfare-maximizing
rate. In contrast, a CBDC that pays the policy rate is only optimal when the policy rate is
about -0.4% because that is the point at which the welfare-maximizing policy rate inter-
sects the policy rate in Figure 5.5.

Finally, Figure 5.8 plots the change in the deposit spread from the introduction of
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Figure 5.7: This figure shows the welfare change from the introduction of CBDC,
across levels of the policy rate (in the x-axis), for different CBDC remuneration
schemes.

CBDC across levels of the policy rate for the same CBDC remuneration schemes consid-
ered thus far. Note that the constant CBDC rates display a U-shape like the ones discussed
in the left panel of Figure 2.2 (or Figure 5.4). By contrast, CBDCs that pay the policy rate,
the welfare-maximizing CBDC rate, or the rule of thumb CBDC rate have downward
sloping lines like the ones discussed in the right panel of Figure 2.2. However, a CBDC
that pays the policy rate decreases the deposit spread by substantially more than a CBDC
that pays the welfare-maximizing rate. In turn, bank disintermediation is stronger and
the welfare change is lower.

5.4 Responses to Monetary Policy Shocks

Having already examined how the economy reacts to the introduction of CBDC by com-
paring the initial pre-CBDC steady state with the final post-CBDC steady state, we now
turn to analyzing how the two economies differ in their response to transitory shocks
around the respective steady states. We focus on impulse responses to a monetary policy
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Figure 5.8: This figure plots the change in the deposit spread from the introduction of
CBDC across levels of the policy rate (in the x-axis), for different CBDC remuneration
schemes.

shock in this section, but our main findings also apply to technology shocks as illustrated
in Appendix C.3.

Figure 5.9 depicts impulse responses to a 50 basis point expansionary monetary policy
shock for different CBDC remuneration schemes. The dotted black line shows the pre-
CBDC case which we compare to the following cases: (i) a CBDC that pays a constant
interest rate of 0%, (ii) a CBDC that pays a constant rate at the welfare-maximizing level
of roughly 0.8% annually for a policy rate of 2%, (iii) a CBDC that pays the policy rate
minus one percent, corresponding to the approximated rule of thumb CBDC rate, and
(iv) a CBDC that pays the policy rate.

Even though these regimes have significantly different welfare implications, the im-
pulse responses are remarkably similar. These results indicate that the introduction of
CBDC and the choice of CBDC remuneration scheme do not have a substantial impact on
the response of the economy to a transitory shock.
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Figure 5.9: This figure depicts the IRFs to a 50 basis points expansionary monetary
policy shock, for different CBDC remuneration schemes.

6 Conclusion

Many countries around the world are currently considering the introduction of a central
bank digital currency and debate what the effects on their economies might be. Since
practical experience with CBDC remains scarce, policy-makers turn to analysis based on
theoretical economic models for insights. Our paper provides such guidance and delivers
a practical message that can be applied to various economies around the world.

We develop a New Keynesian DSGE model to assess the introduction of a CBDC.
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Three competing channels determine the welfare effects in our model. On the positive
side, households benefit from the introduction of a CBDC in two ways. First, they value
the expansion of liquidity services that the new saving instrument provides. Second,
households receive higher deposit rates since CBDC competes with bank deposits which
reduces bank deposit market power. On the negative side, banks face deposit outflows
and cut their lending, which in turn reduces aggregate investment and output.

We assess this welfare trade-off for a wide range of economies that differ in their level
of interest rates. We find substantial welfare improvements of introducing CBDC if coun-
tries follow a simple rule that determines the rate of interest on CBDC: it pays the maxi-
mum between 0% and the policy rate minus 1%. The simplicity of this rule is appealing
since it can easily be communicated to the public and avoids political economy concerns
related to paying negative rates on CBDC. Interestingly, we also find that the introduction
of a CBDC is most beneficial for economies with high interest rates. In such environments,
banks have substantial market power in deposit markets which is sharply reduced once
a CBDC is introduced.

Finally, we close with a potential avenue for future research. Our model abstracts from
the impact of CBDC on financial instability. In times of financial distress, uninsured de-
positors may withdraw their funds from banks and convert them to CBDC, which may
in turn exacerbate the financial turmoil. A line of research studies the implications of
CBDC on financial stability. Theoretical work along this line often builds on the tra-
ditional Diamond and Dybvig (1983) model, and includes Fernandez-Villaverde et al.
(2021), Schilling et al. (2020), Williamson (2022a), Keister and Monnet (2022), and Bidder
et al. (2024) among others. A salient path for succeeding analyses is to integrate finan-
cial crises into our DSGE-framework to study how the introduction and remuneration of
CBDC affects the frequency and severity of crises.
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Appendix A Solving the Static Bank Model
First, substitute the balance sheet condition (2.5) into the objective function and write dj as an implicit
function of 1 + id

j , then the bank’s problem becomes

max
idj

(1 + i)( f j + dj)− (1 + id
j )dj,

Take the first order condition with respect to 1 + id
j

−dj +
(
(1 + i)− (1 + id

j )
)

ϵd
j

dj

1 + id
j

where ϵd
j ≡ ∂ ln dj

∂ ln(1+idj )
. Rearrange, we obtain (2.6).

Next, we solve ϵd
j using (2.3):

ϵd
j =

∂dj

∂(1 + id
j )

1 + id
j

dj

= dj
εd

1 + id
j

1 + id
j

dj
− dj

εd

1 + id
∂(1 + id)

∂(1 + id
j )

1 + id
j

dj
+ dj

1
d

∂d
∂(1 + id)

∂(1 + id)

∂(1 + id
j )

1 + id
j

dj

= εd − εd ∂(1 + id)

∂(1 + id
j )

1 + id
j

1 + id +
∂d

∂(1 + id)

1 + id

d
∂(1 + id)

∂(1 + id
j )

1 + id
j

1 + id

= εd − εd ∂ ln(1 + id)

∂ ln(1 + id
j )

+
∂ ln d

∂ ln(1 + id)

∂ ln(1 + id)

∂ ln(1 + id
j )

. (A.1)

We then solve the elasticities. We define the elasticity of the aggregate deposit rate w.r.t. an individual
deposit, and solve it using (2.4) and then (2.3).

ω
dj
d ≡ ∂ ln(1 + id)

∂ ln(1 + id
j )

=
1
n

(
1 + id

j

1 + id

)εd+1

=
(1 + id

j )dj

(1 + id)d
. (A.2)

We can interpret it as the share of bank j’s deposit.
We solve the elasticity of total deposit w.r.t the deposit rate using (2.1):

∂ ln d
∂ ln(1 + id)

= θ

(
1 − ∂ ln(1 + iL)

∂ ln(1 + id)

)
≡ θ

(
1 − ωd

L

)
, (A.3)

where the last equality is by definition and we can solve it further using (2.2) and then (2.1):

ωd
L ≡ ∂ ln(1 + iL)

∂ ln(1 + id)
= γd

(
1 + id

1 + iL

)θ+1

=
(1 + id)d
(1 + iL)L
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Substitute (A.2) and (A.3) into (A.1), and we obtain

ϵd
j = (1 − ω

dj
d )εd + ω

dj
d (1 − ωd

L)θ. (A.4)

When all banks are identical, in a symmetric equilibrium, they all pay the same deposit rate id
j = id, face

the same elasticity ϵd
j = ϵd, and obtain one n-th of total deposit. Consequently, ω

dj
d = 1/n, and we obtain

equation (2.7).
Once symmetry across banks has been imposed in the model of Section 2, the equilibrium system for

the determination of the endogenous deposit rate is composed of equation (2.6) for the representative bank,
the definition of ωd

L in equation (2.8), the definition of the liquidity interest rate in equation (2.2), as well
as the equation for the behavior of the endogenous deposit markdown (2.7). Reproducing those here, we
have the following equilibrium system of equations:

1 + id =
ϵd

ϵd + 1
(1 + i)

ωd
L = γd

(
1 + id

1 + iL

)θ+1

1 + iL =
(

γm + γd(1 + id)θ+1 + γcbdc(1 + icbdc)θ+1
) 1

θ+1

ϵd =
n − 1

n
εd +

θ

n
(1 − ωd

L)

Introduce the third into the second and simplify in order to obtain:

1 + id =
ϵd

ϵd + 1
(1 + i)

ωd
L =

γd

γm

(
1

1+id

)θ+1
+ γd + (1 − γm − γd)

(
1+icbdc

1+id

)θ+1

ϵd =
n − 1

n
εd +

θ

n
(1 − ωd

L)

This is a system of three equations in three endogenous variables (id, ωd
L, ϵd) and several exogenous vari-

ables (i, icbdc, γm, γd, n, εd). The system is implicit and cannot be solved in closed form. Therefore, we apply
the implicit function theorem to determine how changes in exogenous variables affect the endogenous vari-
ables. First, we show that in a special case, there is a known solution to the system that we can apply the
implicit function theorem around.

Appendix A.1 A Special Case
In the special case where cash and CBDC pay zero interest rate, we can solve in close form for the level of
the policy rate where the deposit rate reaches zero percent. In this case, the equilibrium equations are:

id = iL = 0

ωd
L = γd

ϵd =
n − 1

n
εd +

θ

n
(1 − γd)
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1 =
ϵd

ϵd + 1
(1 + i)

Which from the last equation allows us to obtain the required level of the policy rate for this to be an
equilibrium:

ϵd + 1
ϵd = 1 + i

1
ϵd = i

iid=0 =
n

εd(n − 1) + θ(1 − γd)

This is useful because we know that there is an actual solution to the system of equations that we can then
approximate the system around (this is technically a requirement for the implicit function theorem). It is
also useful to know what is the level of the policy rate where the deposit rate becomes zero, both before
and after the introduction of CBDC.

Appendix A.2 Implicit Function Theorem Application
Denote with x all the exogenous variables and with y the three endogenous ones, simplify the notation of
ωd
L to just ω, and define:

F1(x, y) = 1 + id − ϵd

ϵd + 1
(1 + i)

F2(x, y) = ω − γd
γm+(1−γm−γd)(1+icbdc)θ+1

(1+id)θ+1 + γd

F3(x, y) = ϵd − n − 1
n

εd − θ

n
(1 − ω).

Then we can apply the implicit function theorem to our system of equations that can be represented by
F(x, y) = 0. We can write the matrix of derivatives of the F’s w.r.t. the endogenous variables as:

DyF =


∂F1
∂id

∂F1
∂ω

∂F1
∂ϵd

∂F2
∂id

∂F2
∂ω

∂F2
∂ϵd

∂F3
∂id

∂F3
∂ω

∂F3
∂ϵd

 =

1 0 a
b 1 0
0 c 1

 ,

where:

a = − 1 + i
(ϵd + 1)2 < 0

b = −
γd(1 + θ)(1 + id)−θ−2

[
γm + (1 − γm − γd)(1 + icbdc)θ+1

]
(

γm+(1−γm−γd)(1+icbdc)θ+1

(1+id)θ+1 + γd

)2 < 0

c =
θ

n
> 0
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The determinant of DyF is 1+ abc, which is positive because of the signs of a, b and c. Moreover, we can also
calculate the inverse of DyF (using the transpose of the matrix of cofactors divided by the determinant):

(DyF)−1 =
1

1 + abc

 1 ac −a
−b 1 ab
bc −c 1

 ,

We can also write:

DxF =


∂F1
∂i

∂F1
∂icbdc

∂F1
∂γm

∂F1
∂γd

∂F1
∂n

∂F1
∂εd

∂F2
∂i

∂F2
∂icbdc

∂F2
∂γm

∂F2
∂γd

∂F2
∂n

∂F2
∂εd

∂F3
∂i

∂F3
∂icbdc

∂F3
∂γm

∂F3
∂γd

∂F3
∂n

∂F3
∂εd

 =


− ϵd

ϵd+1
0 0 0 0 0

0 e f g 0 0

0 0 0 0 − εd−θ+θω
n2

1
n − 1

 ,

where:

e =
γd(1 − γm − γd)(1 + θ)(1 + icbdc)θ(1 + id)−θ−1(

γm+(1−γm−γd)(1+icbdc)θ+1

(1+id)θ+1 + γd

)2 > 0

f =
γd

1−(1+icbdc)θ+1

(1+id)θ+1(
γm+(1−γm−γd)(1+icbdc)θ+1

(1+id)θ+1 + γd

)2 ⋚ 0

g = −
γm+(1−γm−γd)(1+icbdc)θ+1

(1+id)θ+1 + γd − γd

(
1 − (1+icbdc)θ+1

(1+id)θ+1

)
(

γm+(1−γm−γd)(1+icbdc)θ+1

(1+id)θ+1 + γd

)2

= −
γm+(1−γm)(1+icbdc)θ+1

(1+id)θ+1(
γm+(1−γm−γd)(1+icbdc)θ+1

(1+id)θ+1 + γd

)2 < 0

Notice that f has the opposite sign of icbdc. That is, if icbdc is positive, then f is negative, if icbdc = 0, then
f = 0, and if icbdc is negative then f is positive. We can use the implicit function theorem to write:

Dxy =


∂id
∂i

∂id
∂icbdc

∂id
∂γm

∂id
∂γd

∂id
∂n

∂id
∂εd

∂ω
∂i

∂ω
∂icbdc

∂ω
∂γm

∂ω
∂γd

∂ω
∂n

∂ω
∂εd

∂ϵd

∂i
∂ϵd

∂icbdc
∂ϵd

∂γm
∂ϵd

∂γd
∂ϵd

∂n
∂ϵd

∂εd


= −(DyF)−1DxF

= − 1
1 + abc

 1 ac −a
−b 1 ab
bc −c 1

 ·


− ϵd

ϵd+1
0 0 0 0 0

0 e f g 0 0

0 0 0 0 − εd−θ+θω
n2

1
n − 1



= − 1
1 + abc


− ϵd

ϵd+1
ace ac f acg a εd−θ+θω

n2 a
(

1 − 1
n

)
b ϵd

ϵd+1
e f g −ab εd−θ+θω

n2 ab
(

1
n − 1

)
−bc ϵd

ϵd+1
−ce −c f −cg − εd−θ+θω

n2
1
n − 1

 .
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Knowing the sign of all the letters (a < 0, b < 0, c > 0, e > 0, f ⋚ 0, g < 0) we can sign these derivatives:
∂id
∂i

∂id
∂icbdc

∂id
∂γm

∂id
∂γd

∂id
∂n

∂id
∂εd

∂ω
∂i

∂ω
∂icbdc

∂ω
∂γm

∂ω
∂γd

∂ω
∂n

∂ω
∂εd

∂ϵd

∂i
∂ϵd

∂icbdc
∂ϵd

∂γm
∂ϵd

∂γd
∂ϵd

∂n
∂ϵd

∂εd

 =

+ + ? − + +

+ − ? + + +

− + ? − + +

 ,

where we required εd > θ(1 − ω) to sign the fifth column, but this requirement is less stringent that εd > θ

which we should assume anyway (more substitutability in the inner nest than the outer nest, saying that
banks are more substitutable with each other than deposits are substitutable with cash and CBDC). The
signs of the third column are -, + , - if icbdc > 0, all zero if icbdc = 0, and +, - , + if icbdc < 0.

Appendix A.3 Pass-Through of the Policy Rate to the Deposit Rate
In this appendix, we analyze the pass-through of the policy rate to the deposit rate and how that depends
on parameters, and whether this pass-through has a minimum, what that minimum is, and how it depends
on parameters. Relative to the static model in Section 2, we introduce the µd cost of issuing deposits that we
adopt in the full model, and we also allow total liquidity to be endogenous as in the full model, denoting
εL ≡ (∂ lnL)/(∂ ln(1 + iL)). To start, notice that, in the pre-CBDC scenario where icbdc = 0 and where
cash pays zero percent, the deposit rate depends on just four equations (we ignore the time subscripts for
notational convenience and because all variables are dated the same):

(1 + iL)θ+1 = γm + γd(1 + id)θ+1 (A.5)

ωd
L = γd

(
1 + id

1 + iL

)θ+1

(A.6)

ϵd =
n − 1

n
εd +

θ

n
−

ωd
L

n

(
θ − εL

)
(A.7)

1 + id =
ϵd

ϵd + 1
(1 + i − µd) (A.8)

We can combine all of these into a single equation in i and id and then use the implicit function theorem
to compute the derivative of id w.r.t. i, and then we can see how this object (which is the pass-through)
behaves. Start with equation (A.8) and simplify:

(ϵd + 1)(1 + id) = ϵd(1 + i − µd)

1 + id = ϵd(i − µd − id) (A.9)

Then, introduce equation (A.7) and simplify:

n(1 + id) =
[
(n − 1)εd + θ − ωd

L

(
θ − εL

)]
(i − µd − id) (A.10)

Furthermore, introduce equation (A.6) and simplify:

n(1 + id) =

[
(n − 1)εd + θ − γd(1 + id)θ+1

(1 + iL)θ+1

(
θ − εL

)]
(i − µd − id) (A.11)
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Finally, introduce equation (A.5) and simplify:

n(1 + id) =

(n − 1)εd + θ − 1
1 + γm

γd
1

(1+id)θ+1

(
θ − εL

) (i − µd − id) (A.12)

Notice that this is an equation in the variables i and id and the parameters n, εd, θ, γm, γd, εL, and µd. Now
we write:

F(id, i) = n(1 + id)−

(n − 1)εd + θ − 1
1 + γm

γd
1

(1+id)θ+1

(
θ − εL

) (i − µd − id) (A.13)

So, the equilibrium equation for id as a function of i can be written as:

F(id, i) = 0 (A.14)

Then, if the assumptions of the implicit function theorem are satisfied, we know that:

did

di
= − Fi

Fid
(A.15)

Since this is the derivative of id w.r.t. to i, it has the interpretation of the pass-through of the policy rate to
the deposit rate, which is an important object in papers like Drechsler et al. (2017, 2021). Notice also that if
we want the second derivative of id w.r.t. i we can also use the implicit function theorem for this:

d2id

di2
=

2FiFid Fiid − FiiF2
id − Fidid F2

i

F3
id

(A.16)

We want to study if there is a value of the policy rate for which d2id
di2 = 0, and then we can obtain the value

of the pass-through, did
di , at that value of the policy rate, to obtain the minimum pass-through and evaluate

how it depends on parameters.
Start with Fi:

Fi = −

(n − 1)εd + θ − 1
1 + γm

γd
1

(1+id)θ+1

(
θ − εL

) ≡ −ℵ(id) < 0 (A.17)

Where the Aleph function denotes the expression inside the brackets which is a function of id only. Notice
that ℵ(id) > 0 everywhere. Then compute Fid :

Fid = n + ℵ(id)− ℵ′(id)(i − µd − id) (A.18)

And notice that:

ℵ′(id) = −
(

θ − εL
) d

did

 1
1 + γm

γd
1

(1+id)θ+1


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= −
(

θ − εL
) (θ + 1) γm

γd
(1 + id)−θ−2(

1 + γm
γd

1
(1+id)θ+1

)2 < 0 (A.19)

Notice then than Fid > 0 so we can apply the implicit function theorem safely. We also know that did
di is

positive, so that pass-through is always positive (this is one of the things proved in proposition 1 of the
paper in Section 2, but that was with exogenous total liquidity, while here liquidity is endogenous, and
there we had the possibility of CBDC, whereas here we are necessarily in the pre-CBDC scenario). Now lets
investigate the second derivative of id w.r.t. i and when it is zero. Notice that Fii = 0. Given this, we know
that d2id

di2 = 0 iff:

FiFidid = 2Fid Fiid (A.20)

Using the expressions above, we can re-write this as:

−ℵ(id)
[
ℵ′(id)− ℵ′′(id)(i − µd − id) + ℵ′(id)

]
= 2

[
n + ℵ(id)− ℵ′(id)(i − µd − id)

]
(−ℵ′(id)) (A.21)

Simplifying, we get:

−ℵ(id)

[
2 − ℵ′′(id)

ℵ′(id)
(i − µd − id)

]
= −2

[
n + ℵ(id)− ℵ′(id)(i − µd − id)

]
2n = ℵ(id)(i − µd − id)

(
2
ℵ′(id)

ℵ(id)
− ℵ′′(id)

ℵ′(id)

)
(A.22)

Using the equilibrium condition F(id, i) = 0, which can be re-written as n(1 + id) = ℵ(id)(i − µd − id), we
can write the previous equation as:

2
1 + id

ℵ(id)

ℵ′(id)
= 2 − ℵ′′(id)ℵ(id)

(ℵ′(id))2 (A.23)

Next, we have to calculate ℵ′′(id). We first write ℵ(id) as a function that depends on constants a and b (these
are unrelated to the a and b parameters inside the Φ function that we use in the full model) and another
function of id denoted y(id):

ℵ(id) = a − by(id)−1 (A.24)

Where a = (n − 1)εd + θ, b = θ − εL, and y(id) is defined as follows:

y(id) = 1 + g(1 + id)h (A.25)

Where g = γm/γd and h = −(θ + 1). This seems convoluted, but it will make computing derivatives much
easier. First, notice that:

ℵ′(id) = by(id)−2y′(id)

ℵ′′(id) = −2by(id)−3(y′(id))2 + by(id)−2y′′(id) (A.26)
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Hence:

ℵ(id)ℵ′′(id)

(ℵ′(id))2 =

(
ay(id)

b
− 1

)(
y(id)y′′(id)

(y′(id))2 − 2

)
(A.27)

And:

ℵ(id)

ℵ′(id)
=

ay(id)2

by′(id)
− y(id)

y′(id)
=

y(id)

y′(id)

(
ay(id)

b
− 1

)
(A.28)

With this, equation (A.23) can be written as:

2
1 + id

y(id)

y′(id)

(
ay(id)

b
− 1

)
= 2 −

(
ay(id)

b
− 1

)(
y(id)y′′(id)

(y′(id))2 − 2

)
2

1 + id
y(id)

y′(id)
=

2b
ay(id)− b

−
(

y(id)y′′(id)

(y′(id))2 − 2

)
(A.29)

Next, notice that:

y(id) = 1 + g(1 + id)h

y′(id) = gh(1 + id)h−1

y′′(id) = gh(h − 1)(1 + id)h−2 (A.30)

So:

y′′(id)y(id)

(y′(id))2 = (1 + g(1 + id)h)
gh(h − 1)(1 + id)h−2

g2h2(1 + id)2h−2

=
(h − 1)

gh(1 + id)h + 1 − 1
h

(A.31)

Hence:

y′′(id)y(id)

(y′(id))2 − 2 =
(h − 1)

gh(1 + id)h − 1 − 1
h

(A.32)

With this, equation (A.29) can be written as:

2
1 + id

y(id)

y′(id)
=

2b
ay(id)− b

−
(

y(id)y′′(id)

(y′(id))2 − 2

)

1 + h + (1 − h)g(1 + id)h =
2bhg(1 + id)h

a + ag(1 + id)h − b
(A.33)

For convenience, notice that a − b = (n − 1)εd + θ − θ + εL = (n − 1)εd + εL ≡ k, so we get:

1 + h + (1 − h)g(1 + id)h =
2bhg(1 + id)h

k + ag(1 + id)h (A.34)
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Use the definition of h = −θ − 1 to simplify:

(2 + θ)g(1 + id)h − θ =
2bhg(1 + id)h

k + ag(1 + id)h

k(2 + θ)g(1 + id)h + a(2 + θ)g2(1 + id)2h − θk − θag(1 + id)h = 2bhg(1 + id)h (A.35)

So, we can finally simplify this into a quadratic equation in z = g(1 + id)h:

a(2 + θ)z2 + [k(2 + θ)− θa − 2bh] z − θk = 0 (A.36)

Simplify the middle coefficient:

k(2 + θ)− θa − 2bh = 2(a − b) + θ(a − b)− θa + 2b(θ + 1)

= 2a + bθ (A.37)

With this, we can express the quadratic equation just in terms of a, b, and θ:

a(2 + θ)z2 + (2a + bθ)z − θ(a − b) = 0 (A.38)

The discriminant for this quadratic equation is:

∆ = (2a + bθ)2 + 4aθ(2 + θ)(a − b)

= (2aθ + 2a − bθ)2 (A.39)

Therefore, the two solutions are:

z1,2 =
−(2a + bθ)± (2aθ + 2a − bθ)

2a(2 + θ)
(A.40)

The correct solution is the one with the plus (the one with the minus would lead to 1 + id being negative,
which would lead to an extremely negative id that is implausible), so we get:

z∗ =
2aθ + 2a − bθ − 2a − bθ

2a(2 + θ)

=
aθ − bθ

2a + aθ
(A.41)

Since we know the minimizer z∗ in close form, we can use it to obtain the minimizer id∗ in closed form as
well:

z∗ = g(1 + id)h

id∗ =

(
z∗

g

) 1
h
− 1 (A.42)

We want to obtain the value of the pass-through at this pass-through minimizer id∗. Notice that since
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y∗ = 1 + z∗, then we get:

y∗ = 1 +
aθ − bθ

2a + aθ
=

2a + 2aθ − bθ

2a + aθ
(A.43)

And since ℵ∗ = a − b(y∗)−1, then we get:

ℵ∗ = a − b
2a + aθ

2a + 2aθ − bθ

=
2a(1 + θ)(a − b)
2a(1 + θ)− bθ

(A.44)

And then the pass-through at the minimizer is:(
did

di

)∗

= −
F∗

i
F∗

id
=

ℵ∗

n + ℵ∗ − (ℵ′)∗(i − µd − id)

=
ℵ∗

n + ℵ∗ − (ℵ′)∗(i − µd − id)
(A.45)

Recall that n(1 + id) = ℵ(id)(i − µd − id), so we can rewrite the previous expression as:(
did

di

)∗

=
ℵ∗

n + ℵ∗ − (ℵ′)∗ n(1+id)
ℵ∗

=
(ℵ∗)2

nℵ∗ + (ℵ∗)2 − (ℵ′)∗n(1 + id)
(A.46)

Recall that:

(ℵ′)∗ = b(y∗)−2(y′)∗ (A.47)

Then relate y′ to y using the equations in (A.30):

y′(id) = gh(1 + id)h−1

(y′)∗ =
h(y∗ − 1)

1 + id (A.48)

Introducing this into our equation for the minimum pass-through, we get:(
did

di

)∗

=
(ℵ∗)2

nℵ∗ + (ℵ∗)2 + b(y∗)−2(θ + 1)(y∗ − 1)n
(A.49)

Compute the inverse of the pass-through for convenience:

((
did

di

)∗)−1

=
n
ℵ∗ + 1 +

b
(y∗)2

θ + 1
(ℵ∗)2 nz∗

= 1 +
n

a − b
+

nbθ2

4a(1 + θ)(a − b)
(A.50)
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Finally, substituting what a and b are, we obtain an expression for inverse minimum pass-through as a
function of just four parameter values n, εd, εL, and θ:

((
did

di

)∗)−1

= 1 +
n

(n − 1)εd + εL
+

n(θ − εL)θ2

4[(n − 1)εd + θ](1 + θ)[(n − 1)εd + εL]
(A.51)

This is an exact expression for the (inverse) minimum pass-through as a function of four relevant parame-
ters n, εd, εL, and θ. This tells us that the inverse minimum pass-through is always between 1 and infinity,
so the minimum pass-through is always between 0 and 1. It is easy to see that when n → ∞ then the inverse
minimum pass-through tends to 1 + 1

εd .
The expression for the pass-through tells us that a higher εL always increases the minimum pass-

through while a higher θ decreases the minimum pass-through. Therefore, if one intended to find the
parameter values that lower the minimum pass-through, one would pick the lowest possible εL and the
highest possible θ. However, we also require 0 ≤ εL ≤ θ ≤ εd, so in order to obtain the lowest possible
minimum pass-through w.r.t. εL and θ one can pick εL = 0 and θ = εd. In this case, the expression for the
inverse minimum pass-through is:

((
did

di

)∗)−1

= 1 +
n

(n − 1)εd +
εd

4(1 + εd)(n − 1)
(A.52)

While this expression depends both on n and εd, if n is too big, then there are no reasonable values of εd that
can achieve a minimum pass-through of 50% or lower. Therefore, the model requires a low n to be able to
match a low minimum pass-through.

Appendix B Details on the Full Model

Appendix B.1 The Household’s Problem
The Bellman equation for the household’s problem is given by:

Vt(AHt−1) = max
Ct ,Nt ,Mt ,{Dj,t}n

j=1,CBDCt ,Bt
{u(Ct)− v(Nt) + βEt(Vt+1(AHt))} .

We can express Ct as:

Ct =
WtNt + AHt−1 + Tt − Bt − Φ(Lt)Pt

Pt
,

with this definition we can write the Bellman equation as a function of 4 individual choice variables and n
deposit choices (the Dj,t). The first order conditions are:

0 = u′(Ct)

(
Wt

Pt

)
− v′(Nt)

0 = u′(Ct)

(
−Φ′(Lt)

∂Lt

∂mt

1
Pt

)
+ β(1 + im

t )Et
(
V′

t+1(AHt)
)
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0 = u′(Ct)

(
−Φ′(Lt)

∂Lt

∂dt

∂dt

∂dj,t

1
Pt

)
+ β(1 + id

j,t)Et
(
V′

t+1(AHt)
)

0 = u′(Ct)

(
−Φ′(Lt)

∂Lt

∂cbdct

1
Pt

)
+ β(1 + icbdc

t )Et
(
V′

t+1(AHt)
)

0 = u′(Ct)

(
− 1

Pt

)
+ β(1 + it)Et

(
V′

t+1(AHt)
)

.

The Benveniste-Scheinkman condition is:

V′
t (AHt−1) =

u′(Ct)

Pt
,

moving this condition one period forward and introducing it into the F.O.C.’s we can rewrite them as:

v′(Nt) = u′(Ct)
Wt

Pt
(B.1)

u′(Ct)Φ′(Lt)
∂Lt

∂mt

1
Pt

= β(1 + im
t )Et

(
u′(Ct+1)

Pt+1

)
u′(Ct)Φ′(Lt)

∂Lt

∂dt

∂dt

∂dj,t

1
Pt

= β(1 + id
j,t)Et

(
u′(Ct+1)

Pt+1

)
u′(Ct)Φ′(Lt)

∂Lt

∂cbdct

1
Pt

= β(1 + icbdc
t )Et

(
u′(Ct+1)

Pt+1

)
u′(Ct)

Pt
= β(1 + it)Et

(
u′(Ct+1)

Pt+1

)
. (B.2)

The first condition is the intratemporal condition for labor supply and the fifth one is the Euler equation.
The second, third, and fourth deal with the demand for cash, deposits, and CBDC respectively.

We will first aggregate the individual demands for the deposits of each of the n banks into an aggregate
deposit demand. If we introduce the fifth F.O.C. into the third, we obtain:

Φ′(Lt)
∂Lt

∂dt

∂dt

∂dj,t
=

1 + id
j,t

1 + it
.

The derivative of aggregate deposits w.r.t. an individual deposit is:

∂dt

∂dj,t
=

εd

εd + 1

(
n

∑
j=1

α
− 1

εd
j d

εd+1
εd

j,t

)− 1
εd+1

α
− 1

εd
j

εd + 1
εd d

1
εd
j,t

=

(
d

εd+1
εd

t

)− 1
εd+1

α
− 1

εd
j d

1
εd
j,t = α

− 1
εd

j

(dj,t

dt

) 1
εd

.

Introducing this into the F.O.C. for deposits we get:

Φ′(Lt)
∂Lt

∂dt
α
− 1

εd
j

(dj,t

dt

) 1
εd

=
1 + id

j,t

1 + it
,
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raise this to the power of εd + 1, multiply by αj, and then add over banks:

(
Φ′(Lt)

∂Lt

∂dt

)εd+1
α
− εd+1

εd
j

(dj,t

dt

) εd+1
εd

=
(1 + id

j,t)
εd+1

(1 + it)εd+1(
Φ′(Lt)

∂Lt

∂dt

)εd+1 ( 1
dt

) εd+1
εd n

∑
j=1

α
− 1

εd
j d

εd+1
εd

j,t =
∑n

j=1 αj(1 + id
j,t)

εd+1

(1 + it)εd+1

Φ′(Lt)
∂Lt

∂dt
=

1 + id
t

1 + it
,

where we have defined:

1 + id
t =

(
n

∑
j=1

αj(1 + id
j,t)

εd+1

) 1
εd+1

.

Using the equation Φ′(Lt)(∂Lt/∂dt) = (1 + id
t )/(1 + it), we can turn the F.O.C. for individual deposits

into:

dj,t = αj

(
1 + id

j,t

1 + id
t

)εd

dt.

Once we have “aggregated up” deposits, we can turn to the decision between the three liquid savings
instruments, where we have the following three F.O.C.s:

Φ′(Lt)
∂Lt

∂mt
=

1 + im
t

1 + it
(B.3)

Φ′(Lt)
∂Lt

∂dt
=

1 + id
t

1 + it
(B.4)

Φ′(Lt)
∂Lt

∂cbdct
=

1 + icbdc
t

1 + it
. (B.5)

The derivative of liquidity w.r.t. real money balances is:

∂Lt

∂mt
=

θ

θ + 1

(
L

θ+1
θ

t

) θ
θ+1−1

γ
− 1

θ
m

θ + 1
θ

m
1
θ
t = L− 1

θ
t γ

− 1
θ

m m
1
θ
t .

Similar expressions are available for ∂Lt/∂dt and ∂Lt/∂cbdct. We can write demands as:

Φ′(Lt)L
− 1

θ
t γ

− 1
θ

m m
1
θ
t =

1 + im
t

1 + it

Φ′(Lt)L
− 1

θ
t γ

− 1
θ

d d
1
θ
t =

1 + id
t

1 + it

Φ′(Lt)L
− 1

θ
t γ

− 1
θ

cbdccbdc
1
θ
t =

1 + icbdc
t

1 + it
.
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Raise all of these to the power of θ + 1 and multiply by an appropriate constant:

Φ′(Lt)
θ+1L− θ+1

θ
t γ

− 1
θ

m m
θ+1

θ
t = γm

(1 + im
t )

θ+1

(1 + it)θ+1

Φ′(Lt)
θ+1L− θ+1

θ
t γ

− 1
θ

d d
θ+1

θ
t = γd

(1 + id
t )

θ+1

(1 + it)θ+1

Φ′(Lt)
θ+1L− θ+1

θ
t γ

− 1
θ

cbdccbdc
θ+1

θ
t = γcbdc

(1 + icbdc
t )θ+1

(1 + it)θ+1 ,

by adding these three we get:

Φ′(Lt)
θ+1L− θ+1

θ
t L

θ+1
θ

t =
(1 + iLt )

θ+1

(1 + it)θ+1 ,

where the aggregate interest rate for liquidity takes the form:

1 + iLt ≡
(

γm(1 + im
t )

θ+1 + γd(1 + id
t )

θ+1 + γcbdc(1 + icbdc
t )θ+1

) 1
θ+1 . (B.6)

This finally allows us to write a simple demand equation for overall liquidity:

1 + iLt
1 + it

= Φ′(Lt). (B.7)

And we can write the demand for each instrument as:

mt = γm

(
1 + im

t
1 + iLt

)θ

Lt (B.8)

dt = γd

(
1 + id

t
1 + iLt

)θ

Lt (B.9)

cbdct = γcbdc

(
1 + icbdc

t
1 + iLt

)θ

Lt. (B.10)

Appendix B.2 Alternative Setup: Liquidity in Utility
In the baseline model, liquid instruments are demanded by the household because of the non-linear cost
function Φ(Lt) in the budget constraint. This leads to the set of tractable holding schedules in (3.4)-(3.6).
This appendix provides an alternative setup where we introduce liquidity into the utility function to achieve
the same holding schedules. Assuming all banks are symmetric, we focus only on the aggregate deposits.

Assume the household has the following utility function:

E0

∞

∑
t=0

βt(U(Ct,Lt)− v(Nt)),

while keeping the budget constraint standard:

PtCt + Bt + Mt + Dt + CBDCt = WtNt + AHt−1 + Tt,
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where
AHt−1 = (1 + it−1)Bt−1 + (1 + im

t−1)Mt−1 + (1 + id
t−1)Dt−1 + (1 + icbdc

t−1 )CBDCt−1.

is the same as in the main text. The liquidity instruments inside Lt now have a one-for-one cost in the
budget constraint, but they enter the utility function.

The first order conditions are

v′(Nt) = UC(Ct,Lt)
Wt

Pt

UC(Ct,Lt)

Pt
=

UL(Ct,Lt)

Pt

∂Lt

∂mt
+ β(1 + im

t )Et

(
UC(Ct+1,Lt+1)

Pt+1

)
UC(Ct,Lt)

Pt
=

UL(Ct,Lt)

Pt

∂Lt

∂dt
+ β(1 + id

t )Et

(
UC(Ct+1,Lt+1)

Pt+1

)
UC(Ct,Lt)

Pt
=

UL(Ct,Lt)

Pt

∂Lt

∂cbdct
+ β(1 + icbdc

t )Et

(
UC(Ct+1,Lt+1)

Pt+1

)
UC(Ct,Lt)

Pt
= β(1 + it)Et

(
UC(Ct+1,Lt+1)

Pt+1

)
Introducing the last equation (Euler equation) into the second to fourth ones and simplifying, we obtain:

it − im
t

1 + it
=

UL(Ct,Lt)

UC(Ct,Lt)

∂Lt

∂mt
(B.11)

it − id
t

1 + it
=

UL(Ct,Lt)

UC(Ct,Lt)

∂Lt

∂dt
(B.12)

it − icbdc
t

1 + it
=

UL(Ct,Lt)

UC(Ct,Lt)

∂Lt

∂cbdct
. (B.13)

Let’s assume a non-separable utility function similar to Greenwood et al. (1988), with the utility of C and L
taking the following form:

U(Ct,Lt) =
(Ct + ξ(Lt))1−σ − 1

1 − σ
,

then the marginal utilities with respect to consumption and L take the following forms:

UL(Ct,Lt) = (Ct + ξ(Lt))
−σξ ′(Lt)

UC(Ct,Lt) = (Ct + ξ(Lt))
−σ.

Hence, (B.11)-(B.13) become

it − im
t

1 + it
= ξ ′(Lt)

∂Lt

∂mt
(B.14)

it − id
t

1 + it
= ξ ′(Lt)

∂Lt

∂dt
(B.15)

it − icbdc
t

1 + it
= ξ ′(Lt)

∂Lt

∂cbdct
. (B.16)

These equations are convenient, because they do not contain wealth effects in the demand for cash, deposits,
and CBDC. This result comes from the GHH-type non-separable utility function.
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Next, we assume the ξ function takes the following form:

ξ(Lt(mt, dt, cbdct)) = mt + dt + cbdct − Φ(Lt(mt, dt, cbdct)),

Taking its derivatives with respect to money, aggregate deposits, and CBDC,

ξ ′(Lt)
∂Lt

∂mt
= 1 − Φ′(Lt)

∂Lt

∂mt

ξ ′(Lt)
∂Lt

∂dt
= 1 − Φ′(Lt)

∂Lt

∂dt

ξ ′(Lt)
∂Lt

∂cbdct
= 1 − Φ′(Lt)

∂Lt

∂cbdct
,

and (B.14)-(B.16) become

Φ′(Lt)
∂Lt

∂mt
=

1 + im
t

1 + it

Φ′(Lt)
∂Lt

∂dt
=

1 + id
t

1 + it

Φ′(Lt)
∂Lt

∂cbdct
=

1 + icbdc
t

1 + it
.

These equations are identical to equations (B.3)-(B.5), which then lead to the holding schedules (3.4)-(3.6);
for further derivations, see Appendix B.1.

Appendix B.3 The Intermediate Good Firm’s Problem
The Bellman equation of the intermediate good firm is:

Vt({KP
j,t}n

j=1, KNP
t ) = max

Nt ,{KP
j,t+1}

n
j=1,KNP

t+1

{
Πm

t + Et(Λt,t+1Vt+1({KP
j,t+1}n

j=1, KNP
t+1)

}
,

where

Πm
t = Pm

t Ym
t − WtNt + (1 − δ)Qt

n

∑
j=1

KP
j,t + (1 − δ)QtKNP

t

−
n

∑
j=1

(1 + il
j,t−1)Qt−1KP

j,t − (1 + it−1 + ϱ)Qt−1KNP
t

Ym
t = AtKα

t N1−α
t

Kt =

(
(1 − ψ)

1
θk (KNP

t )
θk−1

θk + ψ
1

θk (KP
t )

θk−1
θk

) θk

θk−1

KP
t =

(
n

∑
j=1

(αl
j)

1
εl (KP

j,t)
εl−1

εl

) εl

εl−1

,

and Λt,t+1 is the stochastic discount factor that the household uses to discount nominal cash flows between
t + 1 and t. The derivatives of Kt w.r.t. to non-pledgeable and the different components of pledgeable
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capital are:

∂Kt

∂KNP
t

= (1 − ψ)
1

θk

(
Kt

KNP
t

) 1
θk

∂Kt

∂KP
j,t

=
∂Kt

∂KP
t

∂KP
t

∂KP
j,t

= ψ
1

θk

(
Kt

KP
t

) 1
θk
(αl

j)
1
εl

(
KP

t
KP

j,t

) 1
εl

.

The F.O.C.’s w.r.t. labor, non-pledgeable, and all the individual types of pledgeable capital are then:

0 = (1 − α)Pm
t

Ym
t

Nt
− Wt

0 = Et

(
Λt,t+1

∂Vt+1({KP
j,t+1}n

j=1, KNP
t+1)

∂KNP
t+1

)

0 = Et

(
Λt,t+1

∂Vt+1({KP
j,t+1}n

j=1, KNP
t+1)

∂KP
j,t+1

)
.

The Benveniste-Scheinkman conditions are:

∂Vt({KP
j,t}n

j=1, KNP
t )

∂KNP
t

= α(1 − ψ)
1

θk Pm
t

Ym
t

Kt

(
Kt

KNP
t

) 1
θk

+ (1 − δ)Qt − Qt−1(1 + it−1 + ϱ)

∂Vt({KP
j,t}n

j=1, KNP
t )

∂KP
j,t

= αψ
1

θk Pm
t

Ym
t

Kt

(
Kt

KP
t

) 1
θk

(αl
j)

1
εl

(
KP

t

KP
j,t

) 1
εl

+ (1 − δ)Qt − Qt−1(1 + il
j,t−1).

Moving these forward one period and introducing them in the capital F.O.C.s we get:

0 = Et

Λt,t+1

α(1 − ψ)
1

θk Pm
t+1

Ym
t+1

Kt+1

(
Kt+1

KNP
t+1

) 1
θk

+ (1 − δ)Qt+1 − Qt(1 + it + ϱ)


0 = Et

Λt,t+1

αψ
1

θk Pm
t+1

Ym
t+1

Kt+1

(
Kt+1

KP
t+1

) 1
θk

(αl
j)

1
εl

(
KP

t+1

KP
j,t+1

) 1
εl

+ (1 − δ)Qt+1 − Qt(1 + il
j,t)

 .

Using the fact that Λt,t+1 = β
u′(Ct+1)

u′(Ct)
Pt

Pt+1
, the Euler equation, and denoting the intermediate variable Θt ≡

Et

(
αβ

u′(Ct+1)
u′(Ct)

Pm
t+1

Pt+1

Ym
t+1

Kt+1

)
we obtain:

Qt

Pt

1 + it + ϱ

1 + it
− (1 − δ)Et

(
β

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1

)
= Θt(1 − ψ)

1
θk

(
Kt+1

KNP
t+1

) 1
θk

Qt

Pt

1 + il
j,t

1 + it
− (1 − δ)Et

(
β

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1

)
= Θtψ

1
θk

(
Kt+1

KP
t+1

) 1
θk

(αl
j)

1
εl

(
KP

t+1

KP
j,t+1

) 1
εl

.
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We manipulate the second equation (of which there are a total of n versions, one for each bank), raising it
to the power of 1 − εl , multiplying by αl

j, and then adding over all the n equations, to obtain:

n

∑
j=1

αl
j(z

P
j,t)

1−εl
=

Θtψ
1

θk

(
Kt+1

KP
t+1

) 1
θk
1−εl

n

∑
j=1

(αl
j)

1
εl

(
KP

j,t+1

KP
t+1

) εl−1
εl

,

where,

zP
j,t ≡ Qt

Pt

1 + il
j,t

1 + it
− (1 − δ)Et

(
β

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1

)
.

Defining:

zP
t ≡

(
n

∑
j=1

αl
j(z

P
j,t)

1−εl

) 1
1−εl

,

we can rewrite the previous expression as:

zP
t = Θtψ

1
θk

(
Kt+1

KP
t+1

) 1
θk

.

We can also write demand for the individual pledgeable capital of bank j as:

KP
j,t+1 = αl

j

(
zP

j,t

zP
t

)−εl

KP
t+1.

Defining:

zNP
t ≡ Qt

Pt

1 + it + ϱ

1 + it
− (1 − δ)Et

(
β

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1

)
,

we then have two aggregate conditions for KNP
t and KP

t that we can rewrite as:

Θt(1 − ψ)
1

θk K
1

θk
t+1(K

NP
t+1)

− 1
θk = zNP

t

Θtψ
1

θk K
1

θk
t+1(K

P
t+1)

− 1
θk = zP

t .

Raise these to the power of 1 − θk and multiply by ψ in the top one and (1 − ψ) in the bottom one to obtain:

(
ΘtK

1
θk
t+1

)1−θk

(1 − ψ)
1

θk (KNP
t+1)

θk−1
θk = (1 − ψ)

(
zNP

t

)1−θk

(
ΘtK

1
θk
t+1

)1−θk

ψ
1

θk (KP
t+1)

θk−1
θk = ψ(zP

t )
1−θk

.
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Adding both of the previous equations we get:

(
ΘtK

1
θk
t+1

)1−θk

K
θk−1

θk
t+1 = z1−θk

t ,

where:

zt ≡
(

ψ(zP
t )

1−θk
+ (1 − ψ)(zNP

t )1−θk
) 1

1−θk

The previous equation for determining aggregate Kt as a function of zt can then be simplified to:

Θt = zt

With this, the F.O.C.’s for pledgeable and non-pledgeable capital can also be expressed as:

(1 − ψ)
1

θk ztK
1

θk
t+1(K

NP
t+1)

− 1
θk = zNP

t

ψ
1

θk ztK
1

θk
t+1(K

P
t+1)

− 1
θk = zP

t ,

which can be rearranged to:

KNP
t+1 = (1 − ψ)

(
zNP

t
zt

)−θk

Kt+1

KP
t+1 = ψ

(
zP

t
zt

)−θk

Kt+1,

the usual CES expressions.

Appendix B.4 The Capital Producer
We assume that even though non-pledgeable and pledgeable capital are financed differently by interme-
diate good firms (one by borrowing from banks and the other by borrowing in bonds), they are produced
by the same representative capital producer that treats them indistinguishably, so they have the same price
of capital Qt and there is a single investment adjustment cost. It would be straightforward to augment the
model to have two different prices of capital. Denote:

KS
t = KNP

t +
n

∑
j=1

KP
j,t.

The representative capital producer sells QtKS
t+1 dollars worth of new capital, buys (1− δ)QtKS

t dollars
worth of used capital, and additionally pays It dollars in order to increase capital from KS

t to KS
t+1. New

capital KS
t+1 is obtained from KS

t and It as follows:

KS
t+1 = (1 − δ)KS

t + It

(
1 − Ξ

(
It

It−1

))
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With these elements, the nominal period-t profits of the capital good producer are:

ΠK
t = QtKS

t+1 − (1 − δ)QtKS
t − Pt It,

which, using the previous equation for KS
t+1, can be expressed as:

ΠK
t = Qt It

(
1 − Ξ

(
It

It−1

))
− Pt It,

where the function Ξ(·) captures investment adjustment costs. The problem of the capital producer in
period t is:

max
It

Et

∞

∑
τ=0

Λt,t+τ

[
Qt+τ It+τ

(
1 − Ξ

(
It+τ

It+τ−1

))
− Pt+τ It+τ

]
,

where Λt,t+τ is the household’s nominal stochastic discount factor for discounting nominal flows from t+ τ

back to t. The F.O.C. is:

0 = Qt

(
1 − Ξ

(
It

It−1

))
− QtΞ′

(
It

It−1

)
It

It−1
+ EtΛt,t+1Qt+1 It+1Ξ′

(
It+1

It

)
It+1

I2
t

− Pt.

Which we rewrite as:

1 =
Qt

Pt

[
1 − Ξ

(
It

It−1

)
− Ξ′

(
It

It−1

)
It

It−1

]
+ Etβ

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1
Ξ′
(

It+1

It

)(
It+1

It

)2

The Ξ(·) function satisfies Ξ(1) = Ξ′(1) = 0 and Ξ′′(1) ≥ 0.

Appendix B.5 The Bank’s Problem

Appendix B.5.1 Separation

Recall that the bank’s problem is given by:

max Et

∞

∑
s=0

Λt,t+s+1DIVj,t+s+1.

As discussed in the main text, banks do not independently optimize their dividend distribution but instead
take as given that a fraction (1 − ω) of “profits” Xj,t+1 are distributed as dividends. The Bellman equation
for the bank’s problem is:

V(Fj,t, Ωt) = max
idj,t ,Dj,t ,ilj,t ,Lj,t

E
{

βΛDIVj,t+1 + βΛV(Fj,t+1, Ωt+1)
}

,

where Ωt denotes the aggregate state variables that influence the value of being a bank in period t. The
maximization problem is subject to the deposit supply schedule, loan demand schedule, as well as:

DIVj,t+1 = (1 − ω)Xj,t+1

Fj,t+1 = Fj,t(1 − ς)(1 + πt+1) + ωXj,t+1
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Xj,t+1 = itFj,t + (il
j,t − µl − it)Lj,t + (it − µd − id

j,t)Dj,t

− Ψ

(
Lj,t

Fj,t

)
Fj,t − Fj,t(1 − ς)πt+1

The F.O.C. w.r.t. id
j yields the following:

0 = E

{
βΛ(1 − ω)

∂Xj,t+1

∂id
j,t

+ βΛ
∂V(Fj,t+1, Ωt+1)

∂Fj,t+1
ω

∂Xj,t+1

∂id
j,t

}

Since
∂Xj,t+1

∂idj,t
is deterministic (known in period t), it can exit the expectation operator and the optimality

condition becomes
∂Xj,t+1

∂idj,t
= 0, which is equivalent to maximizing (it − µd − id

j,t)Dj,t w.r.t. id
j,t subject to the

deposit supply schedule Dj,t(id
j,t).

Similarly, the F.O.C. w.r.t. il
j yields the following:

0 = E

{
βΛ(1 − ω)

∂Xj,t+1

∂il
j,t

+ βΛ
∂V(Fj,t+1, Ωt+1)

∂Fj,t+1
ω

∂Xj,t+1

∂il
j,t

}

Since
∂Xj,t+1

∂ilj,t
is also deterministic, it can exit the expectation operator as well, and the optimality condition

becomes
∂Xj,t+1

∂ilj,t
= 0, which is equivalent to maximizing

(il
j,t − µl − it)Lj,t − Ψ

(
Lj,t

Fj,t

)
Fj,t

w.r.t. il
j,t subject to the loan demand schedule Lj,t(il

j,t).
The reason the deposit and loan problems can be neatly separated, is because banks can always use

their reserves Hj,t to borrow or lend any excess funds to the central bank, so they always optimize their
loan and deposit franchises separately. If there was a constraint like Hj,t ≥ 0, then there are certain cir-
cumstances under which the deposit and loan franchises interact and the maximization problem cannot be
neatly separated into the two subproblems.

Appendix B.5.2 Deposits

A bank that maximizes (it − id
j,t − µd)Dj,t has the following F.O.C.:

0 = −Dj,t + ((1 + it − µd)− (1 + id
j,t))

∂Dj,t

∂dj,t

∂dj,t

∂(1 + id
j,t)

Denote with ϵd
j,t the endogenous elasticity of dj,t w.r.t. (1 + id

j,t):

ϵd
j,t ≡

∂dj,t

∂(1 + id
j,t)

1 + id
j,t

dj,t
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Then we can write the previous F.O.C. as:

1 = ϵd
j,t((1 + it − µd)− (1 + id

j,t))
1

1 + id
j,t

1 + id
j,t = ϵd

j,t(1 + it − µd)− ϵd
j,t(1 + id

j,t)

1 + id
j,t =

ϵd
j,t

ϵd
j,t + 1

(1 + it − µd) (B.17)

Now lets obtain ϵd
j,t. This is not trivial because both 1 + id

t and dt depend on 1 + id
j,t. Lets compute the

elasticity of the aggregate deposit rate w.r.t. one individual deposit rate:

1 + id
t =

(
n

∑
j=1

αj(1 + id
j,t)

εd+1

) 1
εd+1

∂(1 + id
t )

∂(1 + id
j,t)

=
1

εd + 1

(
n

∑
j=1

αj(1 + id
j,t)

εd+1

)− εd

εd+1

αj(ε
d + 1)(1 + id

j,t)
εd

= (1 + id
t )

−εd
αj(1 + id

j,t)
εd

= αj

(
1 + id

j,t

1 + id
t

)εd

=
dj,t

dt

∂(1 + id
t )

∂(1 + id
j,t)

1 + id
j,t

1 + id
t

= αj

(
1 + id

j,t

1 + id
t

)εd+1

=
(1 + id

j,t)dj,t

(1 + id
t )dt

≡ ω
dj
d,t (B.18)

where ω
dj
d,t is the share of gross interest spending on deposits of bank j at time t. Now lets compute the

elasticity of dt w.r.t. (1 + id
t ):

dt = γd

(
1 + id

t
1 + iLt

)θ

Lt

ln dt = ln γd + θ ln(1 + id
t )− θ ln(1 + iLt ) + lnLt

∂ ln dt

∂ ln(1 + id
t )

= θ − θ
∂ ln(1 + iLt )
∂ ln(1 + id

t )
+

∂ lnLt

∂ ln(1 + iLt )
∂ ln(1 + iLt )
∂ ln(1 + id

t )

= θ

(
1 − ∂ ln(1 + iLt )

∂ ln(1 + id
t )

)
+

∂ lnLt

∂ ln(1 + iLt )
∂ ln(1 + iLt )
∂ ln(1 + id

t )

The elasticity of 1 + iLt w.r.t. 1 + id
t is:

1 + iLt =
(

γ(1 + im
t )

θ+1 + δ(1 + id
t )

θ+1 + η(1 + icbdct)θ+1
) 1

θ+1

∂(1 + iLt )
∂(1 + id

t )
=

(
1 + iLt

)−θ
γd(1 + id

t )
θ =

dt

Lt

∂(1 + iLt )
∂(1 + id

t )

1 + id
t

1 + iLt
= γd

(
1 + id

t
1 + iLt

)θ+1

=
(1 + id

t )dt

(1 + iLt )Lt
≡ ωd

L,t
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With all of these things we can write:

ln dj,t = ln αj + εd ln(1 + id
j,t)− εd ln(1 + id

t ) + ln dt

∂ ln dj,t

∂ ln(1 + id
j,t)

= εd − εd ∂ ln(1 + id
t )

∂ ln(1 + id
j,t)

+
∂ ln dt

∂ ln(1 + id
t )

∂ ln(1 + id
t )

∂ ln(1 + id
j,t)

ϵd
j,t = (1 − ω

dj
d,t)ε

d + ω
dj
d,t

[
(1 − ωd

L,t)θ + ωd
L,t

∂ lnLt

∂ ln(1 + iLt )

]

If all banks are identical they all pay the same deposit rate (id
j,t = id

t ), all face the same elasticity ϵd
t , and they

all obtain one n-th of total deposits (i.e. ω
dj
d,t = 1/n), and the expression becomes:

ϵd
t =

n − 1
n

εd +
1
n

[
(1 − ωd

L,t)θ + ωd
L,t

∂ lnLt

∂ ln(1 + iLt )

]

=
n − 1

n
εd +

θ

n
+

1
n

ωd
L,t

(
∂ lnLt

∂ ln(1 + iLt )
− θ

)
(B.19)

Appendix B.5.3 Loans

The F.O.C. of the loan sub-problem (w.r.t. il
j,t) is:

0 = Lj,t +

{
[1 + il

j,t]−
[

1 + it + µl + Ψ′
(

Lj,t

Fj,t

)]}
∂Lj,t

∂lj,t

∂lj,t

∂(1 + il
j,t)

1 + il
j,t =

ϵl
j,t

ϵl
j,t − 1

[
1 + it + µl + Ψ′

(
Lj,t

Fj,t

)]
(B.20)

where ϵl
j,t denotes the (negative of the) elasticity of lj,t w.r.t. (1 + il

j,t):

ϵl
j,t ≡ −

∂lj,t

∂(1 + il
j,t)

1 + il
j,t

lj,t

Now lets obtain an expression for ϵl
j,t as a function of the other variables in the model. We know the

following things:

zt = Et

(
αβ

u′(Ct+1)

u′(Ct)

Pm
t+1

Pt+1
At+1N1−α

t+1

)
Kα−1

t+1

zt =
(

ψ(zP
t )

1−θk
+ (1 − ψ)(zNP

t )1−θk
) 1

1−θk

zP
t =

(
n

∑
j=1

αl
j(z

P
j,t)

1−εl

) 1
1−εl

zP
j,t ≡ Qt

Pt

1 + il
j,t

1 + it
− (1 − δ)Et

(
β

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1

)
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lj,t = αl
j

(
zP

j,t

zP
t

)−εl

lt

lt =
Qt

Pt
ψ

(
zP

t
zt

)−θk

Kt+1

Lets first compute the elasticity of zP
t w.r.t. one individual zP

j,t:

∂zP
t

∂zP
j,t

=
1

1 − εl

(
n

∑
j=1

αl
j(z

P
j,t)

1−εl

) 1
1−εl −1

αl
j(1 − εl)(zP

j,t)
−εl

= αl
j

(
zP

j,t

zP
t

)−εl

=
lj,t

lt

∂zP
t

∂zP
j,t

zP
j,t

zP
t

= αl
j

(
zP

j,t

zP
t

)1−εl

=
zP

j,tlj,t

zP
t lt

≡ ω
lj
l,t

Now, we compute the elasticity of lt w.r.t. (1 + il
t). For simplicity, we assume that all banks take the real

price of capital Qt/Pt as given, as well as all aggregate variables that are not explicitly related to capital.
Then, we have:

∂ ln Kt

∂ ln zt
=

1
α − 1

∂ ln lt
∂ ln zP

t
= −θk + θk ∂ ln zt

∂ ln zP
t
+

∂ ln Kt

∂ ln zt

∂ ln zt

∂ ln zP
t

The elasticity of zt w.r.t. zP
t is:

∂zt

∂zP
t

= zθk

t ψ(zP
t )

−θk
=

lt
Kt

∂ ln zt

∂ ln zP
t

=
∂zt

∂zP
t

zP
t

zt
= ψ

(
zP

t
zt

)1−θk

=
ltzP

t
Ktzt

≡ ωKNP
K,t (B.21)

We also need the elasticity of zP
j,t w.r.t. (1 + il

j,t):

∂zP
j,t

∂(1 + il
j,t)

=
Qt

Pt

1
1 + it

∂ ln zP
j,t

∂ ln(1 + il
j,t)

=
∂zP

j,t

∂(1 + il
j,t)

(1 + il
j,t)

zP
j,t

=
Qt

Pt

1 + il
j,t

1 + it

1
zP

j,t

With all of these things we can write:

ln lj,t = ln αl
j − εl ln zP

j,t + εl ln zP
t + ln lt

∂ ln lj,t

∂ ln(1 + il
j,t)

=

[
−εl + εl ∂zP

t
∂zP

j,t
+

∂ ln lt
∂ ln zP

j,t

]
∂ ln zP

j,t

∂ ln(1 + il
j,t)
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−ϵl
j,t =

[
−εl(1 − ω

lj
l,t) +

∂ ln lt
∂ ln zP

t

∂ ln zP
t

∂ ln zP
j,t

]
∂ ln zP

j,t

∂ ln(1 + il
j,t)

ϵl
j,t =

[
εl(1 − ω

lj
l,t) + ω

lj
l,t

(
θk(1 − ωKNP

K,t ) +
ωKNP

K,t

1 − α

)]
Qt

Pt

1 + il
j,t

1 + it

1
zP

j,t

If all banks are identical, they all charge the same loan rate (il
j,t = il

t), face the same elasticity ϵl
t, and obtain

one n-th of total loans (i.e. ω
lj
l,t = 1/n), and the expression becomes:

ϵl
t =

[
n − 1

n
εl +

1
n

(
θk(1 − ωKNP

K,t ) +
ωKNP

K,t

1 − α

)]
Qt

Pt

1 + il
t

1 + it

1
zP

t
(B.22)

Appendix B.6 The Retailer’s Problem
Recall that the retailer’s problem is:

max
P∗

t

Et

∞

∑
r=0

γrβr u′(Ct+r)

u′(Ct)

Pt

Pt+r
[P∗

t − Pm
t+r]Yt+r|t.

Notice that Yt+r|t, the amount sold in period t + r by a firm that last reset its price in period t, is defined as:

Yt+r|t ≡
(

P∗
t

Pt+r

)−φ

Yt+r.

Hence, its derivative with respect to the optimal reset price is given by:

∂Yt+r|t
∂P∗

t
= −φ

Yt+r|t
P∗

t
.

The F.O.C. w.r.t. to the optimal reset price is then given by:

0 = Et

∞

∑
r=0

γrβr u′(Ct+r)

u′(Ct)

Pt

Pt+r

[
Yt+r|t − φ(P∗

t − Pm
t+r)

Yt+r|t
P∗

t

]
= Et

∞

∑
r=0

γrβr u′(Ct+r)

Pt+r

(
Pt

Pt+r

)−φ

Yt+r [P∗
t (1 − φ) + φPm

t+r] .

Define

Γ1
t ≡ Et

∞

∑
r=0

γrβr u′(Ct+r)

Pt+r

(
Pt

Pt+r

)−φ

Yt+rPm
t+r

Γ2
t ≡ Et

∞

∑
r=0

γrβr u′(Ct+r)

Pt+r

(
Pt

Pt+r

)−φ

Yt+rP∗
t .

With this notation we can write the F.O.C. as:

φΓ1
t = (φ − 1)Γ2

t . (B.23)
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We can also characterize Γ1
t recursively as:

Γ1
t =

u′(Ct)

Pt
YtPm

t + Et

∞

∑
r=1

γrβr u′(Ct+r)

Pt+r

(
Pt

Pt+r

)−φ

Yt+rPm
t+r

= u′(Ct)
Pm

t
Pt

Yt + γβEt

(
Pt

Pt+1

)−φ

Γ1
t+1. (B.24)

Similarly, for Γ2
t we have:

Γ2
t =

u′(Ct)

Pt
YtP∗

t + Et

∞

∑
r=1

γrβr u′(Ct+r)

Pt+r

(
Pt

Pt+r

)−φ

Yt+rP∗
t

= u′(Ct)
P∗

t
Pt

Yt + γβEt
P∗

t
P∗

t+1

(
Pt

Pt+1

)−φ

Γ2
t+1. (B.25)

From the definition of the price index we can easily derive an equation for its evolution in terms of the real
optimal reset price:

1 = (1 − γ)

(
P∗

t
Pt

)1−φ

+ γ

(
Pt−1

Pt

)1−φ

. (B.26)

Additionally, the aggregate demand for intermediate inputs is the integral over all retail firms:

Ym
t =

∫ 1

0
Yt(s)ds =

∫ 1

0

(
Pt(s)

Pt

)−φ

Ytds = Ytv
p
t , (B.27)

where vp
t is an index of price dispersion that evolves as follows:

vp
t =

∫ 1

0

(
Pt(s)

Pt

)−φ

ds

= γ

(
Pt−1

Pt

)−φ

vp
t−1 + (1 − γ)

(
P∗

t
Pt

)−φ

. (B.28)

Equations (B.23)-(B.28) are the ones given in the text as describing the optimal behavior of retail firms.

Appendix B.7 Resource Constraint
In this appendix, we derive the aggregate resource constraint of the model economy. Notice that the aggre-
gate nominal profits of retail firms are:

ΠR
t = PtYt − Pm

t Ym
t

This is necessarily the case because on aggregate they sell all output in the economy at price Pt, so they
make revenue of PtYt, and they buy all intermediate inputs in the economy at price Pm

t , so they have costs
of Pm

t Ym
t . The dividends distributed by the bank in period t are:

ΠB
t = (1 − ω)Xt
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Intermediate good firms (in the case with symmetric commercial banks) have nominal profits of:

Πm
t = Pm

t Ym
t − WtNt + Qt(1 − δ)KP

t + Qt(1 − δ)KNP
t − Qt−1(1 + il

t−1)K
P
t − Qt−1(1 + it−1 + ϱ)KNP

t

Capital producers (in the case with symmetric commercial banks) have nominal profits of:

ΠK
t = Qt

[
KNP

t+1 + KP
t+1 − (1 − δ)

(
KNP

t + KP
t

)]
− Pt It

We also need the following equations:

KNP
t+1 + KP

t+1 = (1 − δ)
[
KNP

t + KP
t

]
+ It

(
1 − Ξ

(
It

It−1

))
Trt = Mt − Mt−1 + Ht − (1 + it−1)Ht−1 + CBDCt − (1 + icbdc

t−1 )CBDCt−1 − PtGt

Bt = QtKNP
t+1

Lt = QtKP
t+1

Dt + Ft = Ht + Lt

Ft = (1 + it−1)Ft−1 − (1 − ω)Xt − ςFt−1 + (il
t−1 − µl − it−1)Lt−1

+ (it−1 − µd − id
t−1)Dt−1 − Ψ

(
Lt−1

Ft−1

)
Ft−1

Start with the budget constraint of the households:

PtCt = WtNt − PtΦ(Lt)− Bt + (1 + it−1)Bt−1 + (1 + im
t−1)Mt−1

+ (1 + id
t−1)Dt−1 + (1 + icbdc

t−1 )CBDCt−1 + Trt + ΠR
t + ΠB

t + Πm
t + ΠK

t

= PtYt − PtGt − PtΦ(Lt)− QtKNP
t+1 + (1 + it−1)Qt−1KNP

t + (1 + id
t−1)Dt−1 + Mt

+ Ht − (1 + it−1)Ht−1 + CBDCt + (1 − ω)Xt + Qt(1 − δ)KP
t + Qt(1 − δ)KNP

t

− Qt−1(1 + il
t−1)K

P
t − Qt−1(1 + it−1 + ϱ)KNP

t + ΠK
t

= PtYt − PtGt − Qt(KNP
t+1 − (1 − δ)KNP

t )− PtΦ(Lt) + Mt + CBDCt − ϱQt−1KNP
t

+ (1 + id
t−1)Dt−1 + Dt + Ft − Lt − (1 + it−1)(Dt−1 + Ft−1 − Lt−1) + (1 − ω)Xt

+ Qt(1 − δ)KP
t − Qt−1(1 + il

t−1)K
P
t + ΠK

t

= PtYt − PtGt − Pt It − PtΦ(Lt) + Mt + CBDCt + Dt − ϱQt−1KNP
t

− ςFt−1 − µl Lt−1 − µdDt−1 − Ψ
(

Lt−1

Ft−1

)
Ft−1

Which finally implies:

Yt = Ct + Gt + It + Φ(Lt)−
Mt + CBDCt + Dt

Pt
+ ϱ

Qt−1

Pt
KNP

t

+ ς
Ft−1

Pt
+ µl Lt−1

Pt
+ µd Dt−1

Pt
+ Ψ

(
Lt−1

Ft−1

)
Ft−1

Pt

Which is equivalent to equations (3.24)-(3.25) in the main text.
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Appendix B.8 Equilibrium Equations
We assume the following functional forms for v(·), u(·), Ψ(·), Φ(·) and Ξ(·):

v(x) = χ
x1+ 1

η

1 + 1
η

u(x) =
x1−σ − 1

1 − σ

Ψ(x) = κνx (ln x − ln ν − 1) + κν2

Φ(x) = axb − q

Ξ(x) =
κI
2
(x − 1)2 .

The derivatives then are:

v′(x) = χx
1
η

u′(x) = x−σ

Ψ′(x) = κν (ln x − ln ν)

Φ′(x) = abxb−1

Ξ(x) =
κI
2
(x − 1)2

Ξ′(x) = κI (x − 1)

Ξ′′(x) = κI .

The function Ψ is not exactly quadratic, but it has several useful properties described in Ulate (2021). Fur-
thermore, its second order approximation around the steady state is:

Ψ(x) ≈2 κ

2
(x − ν)2 ,

which is the quadratic form that has been traditionally used in the literature.
We reiterate the equilibrium equations here according to their sector. Households (7 equations):

χN
1
η

t = C−σ
t

Wt

Pt

1 = β(1 + it)Et

(
C−σ

t+1

C−σ
t

Pt

Pt+1

)
1 + iLt
1 + it

= abLb−1
t

(1 + iLt )
θ+1 = γm + γd(1 + id

t )
θ+1 + γcbdc(1 + icbdc

t )θ+1

mt = γm

(
1

1 + iLt

)θ

Lt

dt = γd

(
1 + id

t
1 + iLt

)θ

Lt
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cbdct = γcbdc

(
1 + icbdc

t
1 + iLt

)θ

Lt.

Intermediate good firms (8 equations):

Ym
t = AtKα

t N1−α
t

Wt

Pt
= (1 − α)

Pm
t

Pt

Ym
t

Nt

zt = Et

(
αβ

u′(Ct+1)

u′(Ct)

Pm
t+1

Pt+1

Ym
t+1

Kt+1

)
zt =

(
ψ(zP

t )
1−θk

+ (1 − ψ)(zNP
t )1−θk

) 1
1−θk

zP
t =

Qt

Pt

1 + il
t

1 + it
− (1 − δ)Et

(
β

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1

)
zNP

t =
Qt

Pt

1 + it + ϱ

1 + it
− (1 − δ)Et

(
β

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1

)

KP
t+1 = ψ

(
zP

t
zt

)−θk

Kt+1

KNP
t+1 = (1 − ψ)

(
zNP

t
zt

)−θk

Kt+1.

Capital producers (2 equations):

KNP
t+1 + KP

t+1 = (1 − δ)
[
KNP

t + KP
t

]
+ It

(
1 − Ξ

(
It

It−1

))
1 =

Qt

Pt

[
1 − Ξ

(
It

It−1

)
− Ξ′

(
It

It−1

)
It

It−1

]
+ Etβ

u′(Ct+1)

u′(Ct)

Qt+1

Pt+1
Ξ′
(

It+1

It

)(
It+1

It

)2
.

Banks (10 equations):

ωd
L,t = γd

(
1 + id

t
1 + iLt

)θ+1

ϵd
t =

n − 1
n

εd +
1
n

[
(1 − ωd

L,t)θ +
ωd
L,t

b − 1

]

1 + id
t =

ϵd
t

ϵd
t + 1

(1 + it − µd)

ωKNP
K,t = ψ

(
zP

t
zt

)1−θk

ϵl
t =

{
n − 1

n
εl +

1
n

[
(1 − ωKNP

K,t )θk +
ωKNP

K,t

1 − α

]}
Qt

Pt

1 + il
t

1 + it

1
zP

t

1 + il
t =

ϵl
t

ϵl
t − 1

[
1 + it + µl + κν

(
ln
(

Lt

Ft

)
− ln(ν)

)]
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Lt

Pt
=

Qt

Pt
KP

t+1

Xt

Pt

Pt

Pt−1
= it−1

Ft−1

Pt−1
+ (il

t−1 − µl − it−1)
Lt−1

Pt−1
+ (it−1 − µd − id

t−1)
Dt−1

Pt−1

− Ψ
(

Lt−1

Ft−1

)
Ft−1

Pt−1
− Ft−1

Pt−1
(1 − ς)πt

Ft

Pt
=

Ft−1

Pt−1
(1 − ς) + ω

Xt

Pt

Ht

Pt
=

Ft

Pt
+

Dt

Pt
− Lt

Pt
.

Retail firms (6 equations):

1 = (1 − γ)

(
P∗

t
Pt

)1−φ

+ γ

(
Pt−1

Pt

)1−φ

φΓ1
t = (φ − 1)Γ2

t

Γ1
t = C−σ

t
Pm

t
Pt

Yt + γβEt

(
Pt

Pt+1

)−φ

Γ1
t+1

Γ2
t = C−σ

t
P∗

t
Pt

Yt + γβEt
P∗

t /Pt

P∗
t+1/Pt+1

(
Pt

Pt+1

)1−φ

Γ2
t+1

Ym
t = Ytv

p
t

vp
t = γ

(
Pt−1

Pt

)−φ

vp
t−1 + (1 − γ)

(
P∗

t
Pt

)−φ

.

Others (5 equations):

Yt = Ct + It + Gt + Γt

Γt = µl Lt−1

Pt
+ µd Dt−1

Pt
+ ς

Ft−1

Pt
+ Ψ

(
Lt−1

Ft−1

)
Ft−1

Pt
+ ϱ

Qt−1

Pt
KNP

t

+ Φ(Lt)−
Mt + Dt + CBDCt

Pt

it = (1 − ρi) (ι + ψπ(πt − π)) + ρiit−1 + ϵi
t

At = Aρa
t−1 exp(ϵa

t )

Gt = gYt.

Plus a value for the interest rate on CBDC (this would be -100% in the pre-CBDC scenario, but something
like icbdc

t = 0 or icbdc
t = i − 1 in the post-CBDC scenario).

Appendix B.9 Steady State
In steady state, we have Q/P = 1, P∗ = P, vp = 1, YM = Y, Pm/P = φ−1

φ , and i = ι, we can also get rid of
the investment equations. This way we can drop all the 6 equations for the retailers, 2 for the intermediate
good firms, 2 for the capital producers, and 6 of the “others”, to simplify the steady state system from 39
equations to 24:

χN
1
η = C−σ W

P
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1
β
− 1 = i

1 + iL

1 + i
= abLb−1

1 + iL =
(

γm + γd(1 + id)θ+1 + γcbdc(1 + icbdc)θ+1
) 1

θ+1

m = γm

(
1

1 + iL

)θ

L

d = γd

(
1 + id

1 + iL

)θ

L

cbdc = γcbdc

(
1 + icbdc

1 + iL

)θ

L

Y = AKαN1−α

W
P

= (1 − α)
φ − 1

φ

Y
N

z = αβ
φ − 1

φ

Y
K

z(1 + i) =

[
ψ
(

il + δ
)1−θk

+ (1 − ψ) (i + ϱ + δ)1−θk
] 1

1−θk

KP = ψ

(
il + δ

z(1 + i)

)−θk

K

KNP = (1 − ψ)

(
i + ϱ + δ

z(1 + i)

)−θk

K

ωd
L = γd

(
1 + id

1 + iL

)θ+1

ϵd =
n − 1

n
εd +

1
n

[
(1 − ωd

L)θ + ωd
L

∂ lnL
∂ ln(1 + iL)

]
1 + id =

ϵd

ϵd + 1
(1 + i − µd)

ωKNP
K = ψ

(
il + δ

z(1 + i)

)1−θk

ϵl =

{
n − 1

n
εl +

1
n

[
θk(1 − ωKNP

K ) +
1

1 − α
ωKNP

K

]}
1 + il

il + δ

1 + il =
ϵl

ϵl − 1

[
1 + i + µl + κν

(
ln
(

L
F

)
− ln(ν)

)]
X
P

= i
F
P
+ (il − µl − i)

L
P
+ (i − µd − id)

D
P
− Ψ

(
L
F

)
F
P

ς
F
P

= ω
X
P

L
P
+

H
P

=
F
P
+

D
P

Y = C + δ(KP + KNP) + gY + µl L
P
+ µd D

P
+ ς

F
P
+ Ψ

(
L
F

)
F
P
+ ϱKNP

73



+ Φ(L)− M + D + CBDC
P

L
P

= KP

We can further simplify these. The one for the bond rate disappears (just defines the steady state bond rate).
The definitions of W/P, X/P, and H/P can be eliminated, as well as L/P = KP. With these changes our
equilibrium system becomes:

χN
1
η = C−σ(1 − α)

φ − 1
φ

Y
N

β(1 + iL) = abLb−1

1 + iL =
(

γm + γd(1 + id)θ+1 + γcbdc(1 + icbdc)θ+1
) 1

θ+1

M
P

= γm

(
1

1 + iL

)θ

L

D
P

= γd

(
1 + id

1 + iL

)θ

L

CBDC
P

= γcbdc

(
1 + icbdc

1 + iL

)θ

L

Y = KαN1−α

z = αβ
φ − 1

φ

Y
K

z
β

=

[
ψ
(

il + δ
)1−θk

+ (1 − ψ) (1/β − 1 + ϱ + δ)1−θk
] 1

1−θk

KP = ψ

(
il + δ

z/β

)−θk

K

KNP = (1 − ψ)

(
1/β − 1 + ϱ + δ

z/β

)−θk

K

ωd
L = γd

(
1 + id

1 + iL

)θ+1

ϵd =
n − 1

n
εd +

1
n

[
(1 − ωd

L)θ + ωd
L

∂ lnL
∂ ln(1 + iL)

]
1 + id =

ϵd

ϵd + 1
(1/β − µd)

ωKNP
K = ψ

(
il + δ

z/β

)1−θk

ϵl =

{
n − 1

n
εl +

1
n

[
θk(1 − ωKNP

K ) +
ωKNP

K
1 − α

]}
1 + il

il + δ

1 + il =
ϵl

ϵl − 1

[
1/β + µl + κν

(
ln
(

KP

F/P

)
− ln(ν)

)]
ς

ω

F
P

=

(
1
β
− 1
)(

F
P
+

D
P
− KP

)
+ (il − µl)KP − (µd + id)

D
P
− Ψ

(
KP

F/P

)
F
P
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Y = C + δKP + δKNP + gY + µlKP + µd D
P
+ ς

F
P
+ Ψ

(
L
F

)
F
P
+ ϱKNP

+ aLb − q − M + D + CBDC
P

This is a system of 19 equations in 19 unknowns. The unknowns are N, C, Y, iL, L, id, M/P, D/P, CBDC/P,
K, KP, KNP, z, il , ωd

L, ϵd, ωKNP
K , ϵl , F/P. Getting rid of the equations for z, Y, ωd

L, ωKNP
K , L, M/P, and

CBDC/P, we can write:

χN
1
η = C−σ(1 − α)

φ − 1
φ

(
K
N

)α

1 + iL =
(

γm + γd(1 + id)θ+1 + γcbdc(1 + icbdc)θ+1
) 1

θ+1
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(
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)θ (
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) 1
b−1

α
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φ

(
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=
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ψ
(
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] 1
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α
φ−1

φ

(
N
K
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
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K
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
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K
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n
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θ
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n

(
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]
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
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n
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θk

n
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n
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α
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(
N
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]
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ϵl − 1

[
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(
ln
(
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)
− ln(ν)
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ω
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=

(
1
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)
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(1 − g)KαN1−α = C + δKP + δKNP + µlKP + µd D
P
+ ς

F
P
+ Ψ

(
KP

F/P

)
F
P
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) 1
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This is a system of 12 equations in 12 unknowns: N, C, iL, id, D/P, K, KP, KNP, il , ϵd, ϵl , F/P. Recall that
icbdc would be given by an assumption (like icbdc = 0 in the case of our baseline calibration), and the number
of banks (n) would also given.

Appendix B.10 Welfare Change Measure
We define the (multiplicative) consumption equivalent variation required to keep the representative house-
hold indifferent between an initial scenario (for example the pre-CBDC deterministic steady state) and a
new scenario (for example the post-CBDC deterministic steady state) to be the scalar ζ that satisfies the
following equation:

E0

∞

∑
t=0

βt
[
u(CPOST

t )− v(NPOST
t )

]
= E0

∞

∑
t=0

βt
[
u(ζCPRE

t )− v(NPRE
t )

]
.

For example, if the scalar, ζ, that satisfies the previous equation comes out to be 1.0030, this indicates that the
representative household needs to be given 0.3% of its initial-scenario consumption path to be indifferent
between the initial and final scenarios. In the case where u(·) = ln(·), and when we are comparing two
steady states, the previous equation becomes:

ln(CPOST
)− v(NPOST

) = ln(ζCPRE
)− v(NPRE

)

ζ = exp{[ln(CPOST
)− v(NPOST

)]− [ln(CPRE
)− v(NPRE

)]}

In our exposition, when comparing the pre-CBDC and the post-CBDC steady states, we refer to (ζ − 1) · 100
as the “welfare change from CBDC introduction”.

Appendix C Additional Results and Robustness

Appendix C.1 Welfare Across Kappa and Theta
Figure C.1 plots the welfare change between the pre-CBDC scenario and the post-CBDC scenario for the
baseline specification (where CBDC pays an interest rate of zero percent once it is introduced), but for
different levels of κ (the importance of bank equity for lending) and different levels of θk (the elasticity
of substitution between pledgeable and non-pledgeable capital). As the importance of bank equity for
lending increases, the welfare gain from introducing CBDC goes down. This makes sense because ”dis-
intermediating” banks, by lowering their profitability through the introduction of CBDC, decreases lending
more when κ is high. Recall our baseline value is κ = 12 basis points.

Across the different lines, we see that when θk is higher (the blue line), the welfare gains from intro-
ducing CBDC are higher (except for κ = 0). This is also to be expected, because when the substitutability
between bank and non-bank intermediation is higher, then firms can more easily switch between bank and
non-bank borrowing when banks are dis-intermediated, and the detrimental aspects of CBDC introduction
are muted (leading to higher overall welfare gains).

76



0 5 10 15 20 25 30 35 40 45 50

Kappa, in basis points

0.1

0.15

0.2

0.25

0.3

0.35

0.4

W
el

fa
re

 c
ha

ng
e 

fr
om

 C
B

D
C

Figure C.1: This figure shows the welfare change (gain if positive, loss if negative)
from CBDC introduction for different levels of κ (the cost of deviating from the target
loan-to-equity ratio) and three different levels of the elasticity of substitution between
pledgeable and non-pledgeable capital.

Appendix C.2 Transition Between Steady States
Figures C.2 and C.3 depict the transition between the pre-CBDC and the post-CBDC steady state for several
variables of interest. The transitions use our baseline calibration and a CBDC that pays an interest rate of
zero percent. In orange, we have the initial steady state, in the dashed yellow line we have the final (post-
CBDC) steady state, and in blue with have the transition between the two.

We can see that labor falls between the initial and final steady state, and it actually falls by more than
that in the transition. Similarly, consumption increases between the initial and final steady state, and in-
creases even more in the transition. This is possible because aggregate capital actually contracts in the
new steady state (so the transition has disinvestment). Final output is lower in the new steady state, both
due to the lower labor and lower capital. Nevertheless, consumption can end up higher because govern-
ment spending, investment, and waste all fall in the new steady state, and allow consumption to be higher
despite the lower final output.

Deposits, and the share of deposits in liquidity all fall in the new steady state due to the introduction
of CBDC, but not by much. The fraction of deposits in liquidity (ωd

L) falls from 80% to 74%. The loan
rate increases by roughly 0.1% in the new steady state, due to commercial banks having less equity, as can
be seen in the bottom right panel of Figure C.3. Both the deposit rate and the rate on liquidity increase
substantially in the new steady state as can be seen from the bottom row of Figure C.2.
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Figure C.2: This figure depicts the transition (under perfect foresight) between the pre-
CBDC steady state and the post-CBDC steady state for several variables of interest.
CBDC pays an interest rate of 0% and we use the baseline calibration.

Importantly, even though banks pay a higher deposit rate (due to the greater competition with CBDC)
and they have less equity in the new steady state, they also charge a higher loan rate and pay less operating
costs in the new steady state (due to having less equity, recall that their operating costs are given as a
fraction of their equity). Overall, their return on equity is essentially unchanged between the initial and final
steady state. This alleviates concerns that our model is missing an entry margin in response to changes in
bank profitability that could potentially change the results. Overall, labor falls by 0.18%, and consumption
increases by around 0.04%. Overall, welfare is approximately 22 basis points higher in the post-CBDC
steady state than in the initial (pre-CBDC steady state).
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Figure C.3: This figure continues Figure C.2, depicting the transition (under perfect
foresight) between the pre-CBDC steady state and the post-CBDC steady state for ad-
ditional variables of interest. CBDC pays an interest rate of 0% and we use the baseline
calibration.

Appendix C.3 IRFs to a Technology Shock
Figure C.4 presents the IRFs of the economy to a 25-basis-points positive productivity shock, ϵa

t , with a per-
sistence of 0.95 (see equation (3.26) for the law of motion of the technology shock). While the response of the
economy to a technology shock is obviously different than the one to a monetary policy shock depicted in
Figure 5.9, our main conclusion that the response to the shock is very similar across different remuneration
schemes for CBDC is preserved.
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Figure C.4: This figure depicts the IRFs to a 25 basis points positive productivity shock,
with a persistence of 0.95, for different CBDC remuneration schemes.

Appendix C.4 Robustness to Recalibrating Additional Parameters
Sections 5.2 and 5.3 analyzed several CBDC-related outcomes for different levels of the policy rate. In those
sections, only the discount factor, β, was changing to generate the different levels of the policy rate, and
no other underlying parameters where changing along with it. In this section, along with the discount
factor, we vary additional parameters to continue to match some targets which we matched in our baseline
calibration. Namely, we recalibrate the values of the disutility of labor parameter χ, the q parameter in the
liquidity-cost function Φ, the exogenous elasticity of substitution between different banks in loans εl , the
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Figure C.5: This figure displays the policy rate, in orange (in both axes, so it is the 45
degree line), the welfare-maximizing level of the CBDC rate, in blue, and an approx-
imate welfare-maximizing rule of thumb rate which is the maximum between 0 and
the policy rate minus 1%, in yellow.

managerial cost of operating the bank ς, and the fraction of bank profits that stay in the bank ω. We do so to
continue to match the following targets in different steady states associated with different policy-rate levels:
1) labor is equal to one third, 2) Φ(·) = m + d + cbdc, 3) the endogenous share of loans in firm borrowing
is equal to the exogenous share, ωB

K = ψ, 4) Banks are at their loan-to-equity ratio target, L/F = ν, and 5)
bank return on equity is 2.25% quarterly.

The results that we obtained in Sections 5.2 and 5.3 are qualitatively robust to this recalibration. Quan-
titatively, the results do change but to a fairly small degree. As an illustration, we reproduce Figure 5.5, but
now with the recalibration of the aforementioned parameters. Figure C.5 provides the results. The orange
dash-dot line for the policy rate and the yellow dashed line for the rule-of-thumb CBDC rate are still the
same as those in Figure 5.5. The blue line is now different, and increases a lit bit more steeply with the pol-
icy rate, but the differences are fairly small. Further results with this recalibration procedure are available
upon request.
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